Internet Emergency Preparedness in the IETF

Dr. Kimberly S. King SAIC McLean, VA 22102 <u>kimberly.s.king@saic.com</u>

Mr. Scott Bradner Harvard University Cambridge, MA 02138 sob@harvard.edu

Outline

Internet Emergency Preparedness (IEPREP) in the IETF

- Telephony Emergency Preparedness Systems (examples)
 - Government Telephone Preference Scheme (GTPS)
 - Government Emergency Telecommunications Service (GETS)
 - ✦ Multilevel Precedence and Preemption (MLPP)
- IEPREP Telephony Terminology
- Voice over IP (VoIP) Networks
- Session Initiation Protocol (SIP) Network Assumptions
- VoIP and IEPREP
- Next Steps and Conclusions

Internet Emergency Preparedness Charter

IETF Transport Area Working Group

- + Chartered early 2002
 - » http://www.ietf.org/html.charters/ieprep-charter.html
- Chairs: Kimberly King, Scott Bradner
- Produce Requirements document
 - Details IEPREP functions and technologies
 - Includes telephony specific requirements and other applications
 - » To be published as a RFC, the IETF publication series
- May produce Best Current Practices document(s)
 - ✤ Identifies mechanisms to provide behavior of applications
 - Identifies mechanisms for authorization and authentication
 - ✤ Recommendations for application design using existing protocols
 - » BCPs have technical approval of the IETF

Examples

Circuit-Switched Telephony Emergency Preparedness Systems

Government Telephone Preference Scheme (GTPS)

Problem

 Loss of power to PSTN during disaster events was a concern during the 1950's

Objective

- Conserve power to increase the probability that critical emergency personnel can communicate
- Solved by
 - Creating 3 classes of lines
 - ✦ All lines may receive calls
 - Only certain lines can initiate calls during disasters

Scope

+ Local loop lines at major U.K. public carriers

Government Emergency Telecommunications Service (GETS)

Problem

- PSTN resources are in high demand during emergencies
- Objective
 - Increase the probability that critical emergency personnel can communicate during emergencies over the PSTN
- Solved by
 - ✦ GETS calls receive preferential treatment by PSTN switches
 - » Multiple paths to the destination
 - » Calls queue for trunks (10-30 sec. max)
 - » Exemption from Network Management Control
 - » GETS call setup is less likely to be dropped in SS7 network
 - Preferential treatment triggered by content of SS7 message

Scope

- ✦ Local Exchange Carriers and IXCs--major U.S. public carriers
- No pre-emption of existing calls

Multilevel Precedence and Preemption (MLPP)

Problem

 Military communications resources are in high demand during war or emergencies

Objective

- Increase the probability that critical personnel can communicate during emergencies on military network
- Solved by
 - User selects precedence level for call
 - Controlled access to resources is granted by preempting lower priority calls if necessary
 - Preferential treatment triggered by call signaling message
 - » MLPP Service ITU, Recommendation I.255.3
- Scope
 - In U.S. military telephony networks (not in public networks)

VoIP Networks

VoIP

- ✤ Using IP to carry voice signaling and media streams
 - » Enterprise IP networks & the Internet
- VoIP has many forms
 - Enterprises replacement of PBX with software based systems
 - Service provider class-4 (and eventually class-5) circuit-switch replacement by softswitches and gateways
 - ✤ Native IP services offered by cable companies
 - Mobile Switching Center replacements to provide mobility and media control for mobile telephones, etc.

VoIP has many protocols

- ✦ IETF Megaco\ITU H.248 is a gateway control protocol
- Session Initiation Protocol (SIP) is the predominate IETF protocol for setting up, modifying and terminations sessions
- The Internet and its services (e.g. VoIP) is the IEPREP focus
 - ✤ IEPREP scope includes SIP although IEPREP is not limited to telephony

VoIP New Environment, New Analysis Required

With circuit-switched networks

- User demand during disasters causes network congestion
- Call admission control determines admission to the service
- Once admission is granted, bandwidth is guaranteed
- Thus increasing the probability of admission ensures critical personal can communicate during emergencies

In the Internet

- User demand during disasters may cause congestion at certain end systems or tail circuits
 - » e.g., gateways to the PSTN
- Services are distributed (i.e., not centrally controlled)
- The Internet has no call admission control
- Signaling and media transport may follow different paths
- Delivery is best effort (e.g., sound quality may vary)

Assumptions for Internet SIP Networks

- ISPs provide access to the Internet
- ISPs generally can not know which services run over its network
- Service Networks may not be associated with client's ISP

+ E.g, Internet Telephony Gateway providers

VoIP Signaling and Media Streams

VoIP using SIP is comprised of

- Call signaling (SIP)
- ✦ Media streams (RTP)
- Signaling and media streams take different paths
 - ✤ So SIP alone can't reserve resources for clear sounding calls
 - ✤ Furthermore, no resource reservations over multiple ISPs
 - ✤ Yet, SIP could carry priority information for use at end systems

IEPREP and **VoIP**

Preserve existing preferential schemes during IP bridging

Distinguish emergency calls using SIP signaling

✤ In IP at the Start, End to End IP, and IP at the End cases

IEPREP and VoIP (2)

- Approved Jan 2003: Informational RFC
 - "Requirements for Resource Priority Mechanisms for the Session Initiation Protocol" by Henning Schulzrinne
 - » Requirements for signaling priority (not data stream priority)
 - Next, the SIP working group will (hopefully) create a mechanism for SIP to convey emergency call status identification
- Thus, if network policy allows, calls labeled as emergency may be given preferential treatment for resources (e.g., an outgoing port on a gateway)

Next Steps and Conclusion

- Develop Best Current Practices Document
 - Standardize BCP for Internet Emergency Preparedness
- Investigate Quality of Service Mechanisms
 - For example, over a single administrative domain, Differential Services or RSVP may apply
- In conclusion,
 - Preserve existing circuit-switched telephony schemes
 - » At gateways to circuit-switched networks
 - ✦ Allow identification of emergency calls via SIP signaling
 - Develop BCP of industry guidelines
 - Consider other applications where the default method fails to support emergency services

Thank You