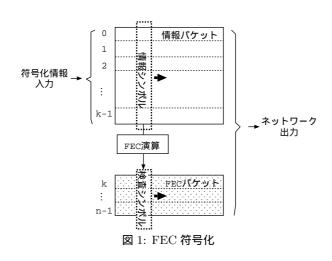
J-003

双方向映像通信 MPEG-2 ソフトウェア CODEC 向き低遅延 FEC の一検討

A study on low delay FEC for video communication using MPEG-2 software CODEC

大西 隆之 Takayuki Onishi 岩崎 裕江 Hiroe Iwasaki 長沼 次郎 Jiro Naganuma 八島 由幸 Yoshiyuki Yashima


1 はじめに

TV 電話に代表される双方向型映像通信アプリケーションにおいては、パケットの再送による遅延増加を避けるため、パケットロスの回復手法として FEC (Forward Error Correcton)が多く使用される.本稿では、ピクチャフレーム単位の発生符号量およびピクチャ種別に応じて FEC 演算パラメータを可変とする低遅延 FEC 処理方式についての考察を行い、PC 向けの MPEG-2 双方向映像通信コーデックへ実装してその効果を確認する.

2 (n,k)可变 FEC 符号化

IP ネットワークを対象とした FEC 演算処理の典型例を図 1 に示す. 映像の符号化情報が格納された k 個の情報パケットに対して, 垂直方向に(n,k)ブロック符号化を行い, n-k 個の FEC パケットを生成する [1].

従来のエンコーダでは平滑化バッファを経由した CBR (Constant Bit Rate)出力が前提となっているため,FEC 符号化を一定の間隔で処理しネットワークへ送出することができる.これに対し,低遅延性を重視した双方向通信用コーデック[2]では,ビットストリームの平滑化を行わず,各ピクチャで発生した符号化情報を各ピクチャ周期(1/30秒)以内にネットワークへ送出する.例として表1に示すパラメータでコーデックを動作させた場合,ピクチャ1枚あたりの発生パケット数は図2に示すような広い範囲に分布するため(n,k)パラメータが固定さ

日本電信電話株式会社 NTT サイバースペース研究所 NTT Cyber Space Laboratories, NTT Corporation

れた従来の方式では、ピクチャ境界における FEC 演算の待ち合わせによって生じる送出遅延が避けられない、

この問題に対処するため,各ピクチャの符号化で発生した情報パケット数に応じて(n,k)パラメータを可変として FEC 演算を行い,ピクチャ境界と FEC 演算ユニットの境界を一致させる.これにより,双方向通信用コーデックに FEC 機能を組み合わせた場合でも,各ピクチャ周期でネットワーク送出を完結することが可能となる.

3 伝送特性解析

 $100 {
m Mbps}$ ベストエフォートの FTTH インターネット 接続を使用して,双方向通信用コーデックのパケットロス特性を測定した.測定の結果,1 以上のパケットがロスしたピクチャを抽出したヒストグラムを図 3 に示す.右 x 軸はピクチャ1 枚あたりの送出パケット数,左 y 軸はピクチャ1 枚あたりのパケットロス数,縦 z 軸が発生回数である.

ピクチャ1 枚あたりの送出パケット数によらず,I ピクチャでは $1\sim3$ パケットのロス,B ピクチャでは $1\sim2$ パケットのロスが,ピクチャロス事象全体の 90% 以上を占めていることが読み取れる.したがって,各ピクチャで $1\sim3$ パケットのロスを回復可能な FEC パケットの付加が効果的と考えられる.

4 損失回復シミュレーション

前項の測定で取得したパケットロスパターンを使用し、RS および XOR(パリティ)符号化を使用した場合の損失回復効果をシミュレートした.図 4 にピクチャ種別ごとの結果を示す.横軸はピクチャ1 枚あたりに付加するFEC パケット数,縦軸が回復不能なピクチャ数である.付加した FEC パケットと同数のロスを回復可能な RS

表 1: 双方向通信用リアルタイム MPEG-2 ソフトウェアコーデック

画像サイズ VGA (640x480pixels)
フレームレート 30fps
ビットレート 平均 8Mbps
パケットサイズ 3078 バイト (UDP/IP)
伝送遅延 5 ピクチャフレーム (165ms)
GOP 構成 N=3, M=3
(IBBIBBIBB...)

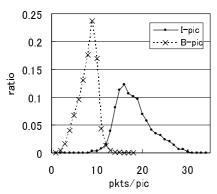
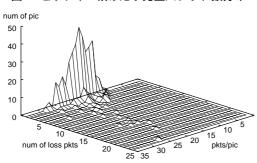
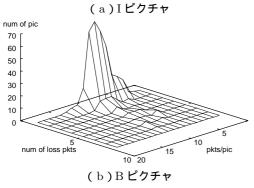




図 2: ピクチャ1 枚あたり発生パケット数分布

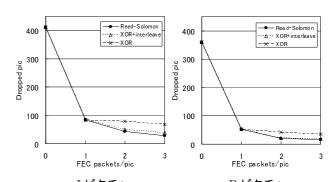

符号化は最も良好な性能を示すとともに , バーストロス 対策としてインタリーブを行った XOR 符号化も RS に 迫る効率を示している .

図 3: パケットロス分布

5 実装と実験結果

前述の低遅延 FEC 方式の効果を確認するため,双方向映像通信 MPEG-2 コーデックに FEC 演算機能を実装した.I,B ピクチャともに RS 符号化を使用し,I ピクチャは 1 枚あたり 3 つ,B ピクチャは 2 つの FEC パケットを付加する構成とした.

前述の FTTH インターネット接続(ネット A) および異なる ISP を経由した接続(ネット B) において,表2の条件下で双方向の映像伝送を行い,損失の回復効果を測定した.実験結果を表3に示す.I ピクチャ,B ピクチャともに,FEC 機能を ON にすることでピクチャロス

I ピクチャ B ピクチャ 図 4: パケットロス回復シミュレーション

表 2: 実験条件

CPU	Pentium4 3.0GHz
メモリ	1Gbytes
OS	Windows XP
伝送時間	10 分間

表 3: 実験結果

	FEC 機能	FEC 復号 実行回数	I ピクチャ ロス数	B ピクチャ ロス数
ネット	ON	192	8	7
A	OFF	1	89	30
ネット	ON	235	3	12
В	OFF	1	119	75

を 1/10 程度に低減することができ,デコーダ側のフレームスキップを抑えて滑らかな映像再生が可能となった.

本稿で述べた (n,k) 可変の FEC 符号化により , RS 符号化およびパケット化を含めてピクチャ周期単位の処理が可能となったため , FEC による遅延の増加はほぼ 1 ピクチャ周期 $(33 \operatorname{msec})$ 以内に抑えられている .

6 おわりに

本稿では、ピクチャフレーム単位の発生符号量が変動する低遅延型の双方向映像通信コーデックに対して、ピクチャフレーム単位の発生符号量およびピクチャ種別に応じて(n,k)を可変とする FEC 符号化方式を適用し、その効果を確認した。

今後,発生符号量およびピクチャ種別に応じた FEC 符号化方式および(n,k)パラメータの適応的選択方式について検討を進め,FTTH インターネット接続環境下での映像受信品質の向上を目指す予定である.

参考文献

- [1] 大塚, 西村, 相原, 前田: "FEC を用いた MPEG2 over IP システムの開発と評価", 情処研究報告, 分散システム / インターネット運用技術, No.024-008, pp.43-48, 2001.
- [2] 岩崎, 長沼, 遠藤, 八島: "IP ネットワークを用いた双方向通信用 リアルタイム MPEG-2 ソフトウェアコーデック", 信学論 Vol. J87-D-I, No. 1, pp.42-50, 2004.