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Abstract—CLIP excels at zero-shot image–text alignment
but its application to pathological multi-label classification
remains underexplored. We present HistoCLIP, a novel
pipeline employing a Cross-Modal Matching (CMM) mod-
ule: zero-shot template-derived text embeddings serve as
queries, while image features from a frozen CLIP visual
encoder act as keys and values in cross-attention to refine
modality alignment. On BCSS-WSSS, LUAD-HistoSeg, and
PanNuke datasets, HistoCLIP achieves average accuracies
of 91.21%, 95.07%, and 88.24%, outperforming other
CLIP-based methods. These results demonstrate Histo-
CLIP’s potential in digital histopathological image classi-
fication.

Index Terms—CLIP, multi-label classification, pathology.

I. INTRODUCTION

Histopathological image analysis has long been a cor-
nerstone of digital pathology [1]–[3], where traditional
convolutional neural networks (CNNs) first demonstrated
remarkable success on natural image benchmarks like
ImageNet. Yet, unlike single-label natural images, whole-
slide tissue specimens often exhibit multiple pathological
features [4], such as tumor subtypes, stromal components,
and grading markers—making multi-label classification a
more representative challenge in clinical practice. Today’s
vision transformers (ViTs) [5] and multimodal pretraining
paradigms offer a powerful alternative: by dividing a
histology slide into patch tokens, ViTs can learn rich
spatial representations that, once fine-tuned, rival state-
of-the-art CNNs. However, assembling large, fully anno-
tated histopathology datasets for supervised pretraining
remains prohibitively expensive.

The emergence of Contrastive Language–Image Pre-
training (CLIP) [6] model to align image patches with
free-text descriptions—provides an elegant solution. As
a vision-language model, CLIP can generalize to new
classes in a zero- or few-shot manner [7], which is par-
ticularly valuable when annotating histological patterns
across diverse cancer types. Practically, two approaches
harness CLIP for multi-label pathology classification. The
first crafts and optimizes prompt templates (e.g., “a his-
tology image showing CLASS”) to maximize alignment
scores, with optional negative prompts to reduce false
positives [8]. The second augments CLIP’s frozen back-
bone with lightweight heads—trainable modules after

the visual encoder—mapping embeddings into a multi-
label prediction space. Although fine-tuning classification
heads often yields superior cross-domain adaptability, it
incurs high annotation costs. Prompt engineering offers a
way to boost zero-shot performance via prompt manipu-
lation. This study evaluates prompt refinement strategies
in cross-domain histopathology and compares them to the
HistoCLIP.
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Fig. 1: Example of multi-label H&E-stained histopathol-
ogy images. Three images, each exhibiting different
staining intensities, contain multiple tissue and cell cat-
egories—namely, tumor cells, fibroblasts, lymphocytes,
and plasma cells. Images from the NuCLS dataset [9].

We validate HistoCLIP on three large-scale multi-label
histopathology datasets—BCSS-WSSS, LUAD-HistoSeg,
and PanNuke—with class definitions and train–validation
splits divided in an 8:2 ratio. We also refine existing
zero-shot CLIP methods with diverse prompt-engineering
strategies to assess their performance on histopathological
images. The contributions are:

• HistoCLIP Pipeline: A novel cross-modal multi-
label classification pipeline for histopathology.

• Cross-Modal Matching (CMM) Module: A mod-
ule fusing text and image embeddings via cross-
attention, outperforming other zero-shot approaches.

• Extensive Comparative Evaluation: All Experi-
ments are conducted on two tissue-level and one
cell-level dataset, directly comparing HistoCLIP
against multiple CLIP-based zero-shot methods. Re-
sults show that HistoCLIP consistently outperforms
these approaches, demonstrating its robustness and
effectiveness.

II. MULTIPLE ZERO-SHOT STRATEGIES

CLIP’s powerful zero-shot capabilities can be un-
locked by framing downstream tasks as natural language
prompts. Drawing inspiration from the study of prompt
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for Natural Language Processing (NLP), we explored four
strategies to improve zero-shot ability of Vanilla CLIP
model in the multi-label classification task.

A. Baseline

For baseline method (Fig. 2), we employ the CLIP
model (ViT-B/16) with OpenAI’s pretrained weights for
zero-shot inference, and compare it against our pro-
posed CLIP enhancement methods: One-vs-Rest prompt-
ing, Power-set prompting and Top-k prompting.
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Fig. 2: The framework of baseline method. Here, x and y
denote the embeddings of images and texts produced by
the encoder, respectively.

The primary motivation for selecting pretrained archi-
tectures lies in their ability to encode rich, hierarchical
features learned from vast image corpora. By leveraging
their pretrained weights, we inherit representations honed
on large-scale datasets, providing a robust initialization
that accelerates convergence and improves generalization
for our multi-label classification task.
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Fig. 3: The framework of One-vs-Rest prompting method.

B. One-vs-Rest prompting

For each histopathology image and each class (e.g.,
tumor, stroma, lymphocyte), we perform a binary decision
by asking CLIP whether the class is present. Positive
prompts take the form “a photo of a {class}”, while the
negative prompt is expressed as “a photo with nothing
in it.” to reduce label-specific bias. We compute the
cosine similarity between the image embedding and each
text embedding from CLIP’s frozen encoders; if the
similarity to the positive prompt exceeds that to the

negative prompt, we assign label 1, otherwise 0. For
example, querying “a photo of a tumor.” on an image
containing tumor tissue yields a higher similarity for the
positive prompt (label=1), whereas querying “a photo of
a lymphocyte.” returns a higher similarity for the negative
prompt (label=0). The framework is shown in Fig. 3.

C. Power-set prompting

In this method, for each histopathology image, we
enumerate all 2n possible subsets of n labels (e.g., tumor,
stroma, lymphocyte) and form a single prompt by listing
the classes in each subset separated by commas. We
then compute the cosine similarity between the image
embedding and each combined text embedding from
CLIP’s frozen encoders. The labels belonging to the
subset with the highest similarity score are marked as
1, and all remaining labels are set to 0. See Fig. 4 for a
detailed example.
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Fig. 4: The framework of Power-set prompting method.

D. Top-k prompting

Enumerating all 2n subsets in the Power-set prompt-
ing scheme quickly becomes infeasible as n increases.
Instead, we leverage CLIP’s ranking: we first compute
similarity scores for each class (e.g., tumor, stroma,
lymphocyte) and sort them as [Top-1, Top-2, . . . , Top-
n]. Then, for each k ∈ {1, . . . , n}, we form a prompt by
listing the top-k classes (“a photo of a Top-1, a photo
of a Top-2, . . . , a photo of a Top-k”) and compare its
embedding to the image. To guarantee coverage of the
empty case, we include a “a photo with nothing in it”
prompt. This reduces the search space from O(2n) to
O(n) while retaining CLIP’s learned ranking information.
Please refer to Fig. 5 for details.

E. HistoCLIP Pipeline

In contrast to the zero-shot methods, which require no
additional training but offer limited gains on histopatho-
logical images due to domain mismatch, we introduce
HistoCLIP, a three-stage pipeline. In the feature em-
bedding stage, the input image is passed through CLIP’s
visual encoder to extract high-level representations. Next,
the Cross-Modal Matching (CMM) stage employs a
Transformer decoder to fuse class embeddings (queries)
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Fig. 5: The framework of Top-k prompting method.

with image features (keys and values) via multi-head
attention and a feedforward network, guiding attention
to the regions most relevant for each class. Finally, a
lightweight post-processing step aggregates the matched
embeddings to yield the final per-class scores for each
sample. The data flow of pipeline is shown in Fig. 6.
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Fig. 6: The pipeline of HistoCLIP.

Given a batch of images x, we first extract visual
features using CLIP’s frozen visual encoder:

z = fvis(x) ∈ RB×d, (1)

where B is the batch size, d the feature dimension, and
fvis(·) denotes the CLIP visual encoder producing image
embeddings z. Next, we construct a zero-shot classifier
matrix C ∈ Rd×N by encoding each of the N class labels
via CLIP’s text encoder and averaging over M prompt
templates:

C =
[
ē1, . . . , ēN

]
, ēc = Norm

(
1
M

M∑
i=1

eci

)
. (2)

Here, eci is the embedding of class c under template i, M
the total number of templates, and Norm(·) denotes L2
normalization to unit length.

These class embeddings (transposed to shape N × d)
serve as queries Q, while the image features z are used
as keys K and values V in a lightweight Transformer
decoder. The core attention operation is

A = softmax
(
QK⊤/

√
d
)
V, (3)

where
√
d scales the dot products, and the output A ∈

RN×B×d is further processed with residual connections

and a two-layer feedforward network to yield matched
embeddings T . Finally, we permute T to RB×N×d and
apply adaptive average pooling Ψ(·) along the feature
dimension to obtain the predicted class scores, where ŷic
is the logit score for sample i and class c.

ŷ = Ψ
(
permute(T )

)
∈ RB×N , (4)

F. Loss and Evaluation

We train the model using the combined sigmoid and
binary cross-entropy loss:

LBCE = −
[
y log σ(ŷ) + (1− y) log

(
1− σ(ŷ)

)]
, (5)

where ŷ is the raw logit, y ∈ {0, 1} the ground-truth
label, and σ(ŷ) the sigmoid-activated probability.

For evaluation, we report mean accuracy (mAcc) across
all C classes and N samples:

mAcc =
1

C

C∑
c=1

1

N

N∑
i=1

I
(
ŷbinic = yic

)
,

ŷbinic = I
(
σ(ŷic) ≥ 0.5

)
.

(6)

where I(·) is the indicator function. This metric aver-
ages the fraction of correct binary decisions per class.

III. EXPERIMENTS

We conduct all experiments on three publicly avail-
able histopathology datasets: BCSS-WSSS [10], LUAD-
HistoSeg [11], and PanNuke [12]. The first two provide
224×224 tissue-level patches labeled with four categories
(Tumor, Stroma, Lymphocyte, Necrosis), while PanNuke
contains 256 × 256 cell-level images across five nuclear
types (Neoplastic, Inflammatory, Connective/Soft Tissue,
Dead, Epithelial). HistoCLIP was trained on a single
NVIDIA RTX 4090 GPU, system environment is Ubuntu
20.04 LTS. All three experimental settings used the same
random seed and were trained for 800 epochs, including
a 5-epoch warm up. We employed an initial learning rate
of 1e−3, the ViT-L/14 backbone with OpenAI pretrained
weights, and automatic mixed precision (AMP) for ac-
celerated computation. The result is shown in Table I.

TABLE I: Zero-Shot mAcc Results.

Dataset Approach mAcc

BCSS-WSSS

Baseline 0.4266
One-vs-Rest 0.3757
Power-set 0.4713
Top-K 0.4358
HistoCLIP 0.9121

LUAD-HistoSeg

Baseline 0.4485
One-vs-Rest 0.2932
Power-set 0.4422
Top-K 0.4738
HistoCLIP 0.9507

PanNuke

Baseline 0.4107
One-vs-Rest 0.4371
Power-set 0.5263
Top-K 0.4862
HistoCLIP 0.8824
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Across all three benchmarks, our proposed HistoCLIP
demonstrates a clear advantage over both the vanilla CLIP
baseline and the various zero-shots.

The baseline zero-shot inference (direct use of CLIP’s
pretrained ViT-L/14 without modification) yields modest
mAcc scores (0.4266, 0.4485, 0.4107 on BCSS-WSSS,
LUAD-HistoSeg, and PanNuke, respectively), reflecting
the domain gap between natural and pathology.

The One-vs-Rest strategy—casting each class as a
binary “yes/no” decision—fails to improve upon the
baseline in two of three cases (BCSS-WSSS: 0.3757;
LUAD: 0.2932; PanNuke: 0.4371). This suggests that
simple binary prompting cannot fully overcome CLIP’s
bias toward natural-image contexts.

By Power-Set prompting, which exhaustively enumer-
ates all label subsets, we see moderate gains on BCSS-
WSSS (0.4713) and PanNuke (0.5263), indicating that
leveraging joint label combinations can better capture co-
occurrence patterns. However, its performance on LUAD-
HistoSeg (0.4422) remains similar to the baseline, and the
quadratic growth in prompt space limits scalability.

Top-K prompting—which ranks class probabilities and
evaluates the top-k label combinations—yields mAcc
scores of 0.4358, 0.4738, and 0.4862. Although this
linear-complexity approach consistently outperforms both
the baseline and One-vs-Rest methods, it still trails
Power-Set on PanNuke and falls significantly behind
HistoCLIP.

In contrast, HistoCLIP attains over 0.88 mAcc on all
datasets (0.9121, 0.9507, 0.8824), more than doubling
the baseline in some cases. By integrating learned cross-
modal matching via a lightweight Transformer decoder,
HistoCLIP effectively aligns pathological image features
with class embeddings, bridging the domain gap and
delivering robust, scalable multi-label classification.

IV. CONCLUSION AND DISCUSSION

We presented HistoCLIP, a framework that adapts
CLIP to multi-label pathology classification. By extract-
ing image features with CLIP’s visual encoder, building
a zero-shot classifier from text embeddings, and applying
a lightweight Transformer-based Cross-Modal Matching
(CMM) module, HistoCLIP significantly outperforms
zero-shot prompting methods (One-vs-Rest, Power-Set,
Top-K) on BCSS-WSSS, LUAD-HistoSeg, and PanNuke.

Our results highlight that simple prompting cannot
fully bridge the domain gap, whereas CMM effec-
tively aligns visual and textual embeddings to focus on
pathology-relevant regions without fine-tuning the entire
backbone. This design yields rapid convergence and ro-
bust mAcc improvements (up to 0.95).

Limitations include reliance on patch-level inputs and
supervised CMM training. Future work will explore
whole-slide aggregation, unsupervised adaptation to re-
duce annotation dependence, and integration of local-
ization maps or clinical metadata for enhanced inter-
pretability. We believe HistoCLIP’s modular approach

can generalize to other specialized imaging domains with
scarce labels.
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