仮想人体に対して高精度な切開・変形操作を 可能とする適応型力学計算フレームワーク

中尾 恵¹ 黒田知宏² 小山博史² 小森 優³ 松田 哲也¹

1京都大学大学院情報学研究科,2京都大学医学部附属病院医療情報部,3滋賀大学医学部生命情報学

1. はじめに

近年、情報技術の医学・医療への応用の一つとして、手術シミュレーション開発が盛んに行われている。特に、Virtual Reality (VR)を応用した手術シ ミュレーションは外科分野において重要な役割を果たしている。VR が持つ視覚的かつ対話的な性質は 研修生や若手医師のトレーニングに加え,難易度の 高い手術のプランニングにも有用である[1]。

これまで、コンピュータを用いたプランニングシ ステムは主に整形外科における手術結果の想定[2] や形成外科における治療計画[3]を目的として開発 されてきた。しかし、これらシステムは術後の結果 予想や手術アプローチの基本計画に有効であるが、 術中の手技に基づいて詳細なストラテジーを計画す るなどの用途には用いることができない。

一方、本研究では患者から取得したデータから構築した仮想人体を用いて、術前にリハーサルを行う 環境を提供することによって綿密なストラテジー計画を支援するシステムの構築を目指している。術中 に頻繁に生じる切開から開創、把持などに至る流れ をシミュレートするためには、切開と変形の両方を 高精度にサポートするモデルの提供が求められる。

実時間での変形や切開の表現を可能とする技術は、 特に手術手技のトレーニングを目的としたシステム [4] における力学計算モデルとして、様々な研究開 発がなされている。精度が要求される変形・反力計 算モデルとしては高速化手法を適用した有限要素法 [5] が、切開表現にはメッシュの修正を伴うため、 質点系に基づいたシミュレーション[6] が用いられ

An Adaptive Physics-Based Framework Enabling Cutting and Deformation for Virtual Bodies

Megumi NAKAO¹, Tomohiro KURODA², Hiroshi OYAMA², Masaru KOMORI³, Tetsuya MATSUDA¹ ¹Graduate School of Informatics, Kyoto University ²Dept. of Medical Informatics, Kyoto University Hospital ³Computational Biomedicine, Shiga Univ. of Medical ることが多い。このように現状の手法では、対話的 な切開と高精度な変形は独立にシミュレートされて おり、その両方をサポートすることは難しい。

そこで本稿では、一貫して力学特性に基づいたシ ミュレーションを行うことを前提とし、組織切開後 においても高精度な変形・反力計算を高速に行える 適応型の力学計算フレームワークを提案する。提案 フレームワークは仮想人体形状に対して、仮想メス による対話的な組織切開をシミュレートする。さら に、切開によるメッシュ修正後も有限要素法に基づ いた高精度な変形シミュレーションを可能とする。 提案フレームワークを用いて、手術アプローチの計 画を支援するシステムを構築し、試用評価を行った ので報告する。

2. 適応型力学計算フレームワーク

図1に提案するフレームワークの概要を示す。本 フレームワークは対話的な組織切開を行える状態と リアルタイムな変形操作を行える状態の2つの状態 を持つ。

仮想空間内において仮想メスの先端と仮想人体と の接触が検出されると、後述するメッシュ修正のア ルゴリズムによってばね質点モデルをリモデリング する。このとき、質点系が次の安定状態へと移行す る過程において三次元的に切開創がシミュレートさ れる。本アルゴリズムはリアルタイムな描画に必要 な 30Hz のリフレッシュレートを達成する。手に返 される反力は接触点と仮想メスの先端からフックの 法則に基づいて高速に計算される。

切開創の形成後、システムは次の状態へと遷移し、 自動的に有限要素計算に必要な剛性マトリクスの計 算を開始する。本計算はバックグラウンドプロセス として行われ、シームレスに計算モデルの移行がな される。このことによって、切開後も有限要素法に 基づいたリアルタイムな変形計算を提供でき、高精 度かつ連続体力学に基づいたシミュレーション結果 を導出することができる。

図1. 適応型力学計算フレームワークの概要

3. 軟組織切開·変形手法

本章では、提案するフレームワークに適用される 各アルゴリズムの詳細を述べる。ここで、対象とす るデータは患者の CT や MRI から領域抽出され、四 面体充填された三次元形状(四面体メッシュオブジ ェクト)とする。

3.1 組織切開に伴うメッシュ修正

四面体集合からなる胸壁に対して、厚みのある切 開を表現するためには、定義される切開面周辺のメ ッシュを切開前の物理特性を踏襲しつつ修正を行い、 修正後のメッシュに対して変形シミュレーションを 適用する必要がある。本稿では、次節の動的な有限 要素モデリングの説明に有用となるため、特に切開 時のメッシュ修正に関して詳細に記述する。質点系 に基づいた切開時の力学計算の詳細に関しては[7] を参照のこと。

最初に、切開時にメスの移動によって定義される 刃通過平面 C を考える。そして、C と四面体オブジ ェクトTとの関係から切開面Sが定義されるとする。 図 2 (a) はこれら三つの要素の関係を例示している。 この S を考慮に入れて新たな四面体群を定義できれ ば、メッシュ修正が達成される。ここで、図 2 (a) の一番右の四面体と C とは部分的に交差しているの が分かる。この部分的な交差によって、新たな四面 体メッシュの定義が複雑となり、多くのパターンを 扱わなければならない[6]。そこで、本研究では四面 体を構成するノードの移動を行うことによって、部 分的な交差を除去することとした。図2は刃通過平 面上におけるノードの移動法則を示している。図に おいて、例えばノード A はメスの刃の通過エリアで ある C の境界 B 上の点 A' に一意に更新する。こ のときのノード移動方向は B と交差するライン群で

図 2. 切開面の定義 (C: 刃通過平面, S: 切開面, T: 四面体集合): (a) 刃通過平面と四面体集合との交差, (b) 刃通過平面上のノードの移動

図 3. 完全交差による四面体分割: (a) 四辺との交差, (b) 三辺との交差

ある vl と v2 の平均として与えられる。この方法に したがって、領域 C の周辺に隣接して存在するすべ てのノードを境界線 B の上に移動する。

この結果、切開面 S は図 2 に示す 2 パターンの C と T の完全交差によって記述される。この組み合わせによって生成された切開面 S は厚みのある切開創を表現する。

3.2 組織切開後の変形シミュレーション

組織切開に伴うメッシュ修正の後、有限要素法に 基づいた変形にシームレスに移行する。本フレーム ワークは、アプリケーションを中断させることなく 別の CPU を使用して、オンラインでモデリングを 行う。このときの処理は以下のようになる。

- (1) 切開部位周辺にバウンディングボックスを設定し、有限要素モデリングの対象とする。このとき、バウンディングボックス外のノードは変形が及ばないものとし、固定される。
- (2) 剛性マトリクス作成のための前処理を行う。 前処理では Condensation[5] やバウンディング ボックス外の固定ノードの削除によって縮小さ れた剛性マトリクスが導出される。

上記処理が終了するまではメイン CPU で質点系 に基づいた処理が行われる。処理が終了次第、有限 要素法に基づいた変形シミュレーションへと移行す る。この際、計算処理に用いられる CPU には同じ マシン上に備えられた並列 CPU や、ネットワーク 上の計算サーバが考えられる。

本手法によって、メスによるリアルタイムな切開 表現には、実時間性を優先して質点系に基づいたシ ミュレーションを、その後の開創に伴う変形計算に は有限要素法に基づいたシミュレーションを適用す ることができる。この結果、切開を伴うシミュレー ションにおいても、その後の変形に連続体力学で用 いられるヤング率やポワソン比などのパラメータを 反映でき、高い安定性と計算精度を得る事が可能と なる。

4. 評価と結果に対する考察

4.1 構築システムと対象データ

提案フレームワークを1台のPHANToM (SensAble Technologies Inc.)を備える標準的なPC (CPU Pentium 4 Dual 2.4GHz, Memory 1024MB) へ と実装した。切開ラインの入力は PHANToM を通し て仮想メスを操作することによって行う以外に、マ ウスを用いて行うこともできる。対象とする症例は 大動脈弓部瘤とする。図4左は CT データをボリュ ームレンダリングによって視覚化したときの全体図 であり、図4右は体表、肋骨、心臓及び大動脈を抽 出して作成された四面体メッシュを示している。

図 4. 対象となる患者 CT データのモデリング結果

4.2 動的有限要素モデリングの検証

図 5 は仮想人体の体表に 15cm の切開創を与えて から、6cm の変位を与えて切開創を(a) ばね質点モ デルを用いた場合と (b) 動的モデリングを行った後 に有限要素に基づいて変形させた場合の形状の違い を示している。(a) ではメッシュに形状にゆがみが 生じているが、(b) ではより高精度な変形結果が得 られているのが分かる。

動的な有限要素モデリングに要する時間は切開創 周辺に定義されるバウンディングボックス内に位置 するノード数に依存する。今回の例では 462 ノード が対象となり、剛性マトリクスの作成に 8.4 秒を要 した。このように本フレームワークは短時間でシミ ュレーション精度を向上させることができ、術前プ ランニングのための高精度な術野の予測を可能とす る。

図 5. 切開創の変形シミュレーション結果の比較

4.3 手術ストラテジー計画における試用結果

最後に心臓血管外科における熟練医 4 名に本シス テムを試用してもらい、術前における手術アプロー チを計画してもらった。この結果、図 6 に示すよう に、(a) 正中切開と(b) 左開胸の2 通りのアプローチ が提案された。 正中切開によるアプローチは大動脈の硬化部位の 把握や血流の遮断は容易だが、遠位弓部の性状把握 がしづらいとの見解が得られた。一方、左開胸によ るアプローチでは、瘤の性状把握は容易だが、肋骨 を除去しなければならないなどの意見が得られた。 このように提案フレームワークによって切開と開創 を高精度に表現することによって術野確保に至るプ ロセスをシミュレートできる。外科医からは形状と 位置関係などは実際の手術とほぼ同等であり、プラ ンニング効果が期待できるとの評価が得られた。

5. おわりに

本稿では、手術シミュレーションへの活用を目的 とした仮想人体の実現へ向け、実測された仮想人体 形状に対して切開と変形の両方を高精度にシミュレ ートできる適応型力学計算フレームワークを提案し た。提案フレームワークはユーザの切開操作に伴っ てメッシュを再構成し、動的に剛性マトリクスを構 築することによって有限要素法に基づいた高精度な 変形シミュレーションを可能とする。外科医による システム試用の結果、提案手法が外科手術における 術野構築作業のリハーサルを可能とし、術前計画を 効果的に支援することを確認した。

謝辞

本研究は、平成 14 年度科学研究費補助金 特別研

究員奨励費 No. 0103889、により行われた。また、 平成 14 年度 IPA 未踏ソフトウェア創造事業による 支援を受けた。ここに感謝の意を表します。

参考文献

- P.J. Gorman, A.H. Meier, M. Krummel, "Computer-Assisted Training and Learning in Surgery", Computer Aided Surgery, Vol. 5, pp. 120-127, 2000.
- [2] James. Xia, Horace H. S. Ip, Nabil Samman et al, "Three-Dimentional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery", IEEE Transaction of Information Technology in Biomedicine, Vol. 5, No. 2, pp. 97-107, 2001.
- [3] J. Ehrhardt, H. Handels, T. Malina et al, "Atlas-based segmentation of bone structures to support the virtual planning of hip operations", International Journal of Medical Informatics, Vol. 64, pp. 439-447, 2001.
- [4] U. Kuhnapfel, H. K. Cakmak and H. Mass, "Endoscopic Surgery Training Using Virtual Reality and Deformable Tissue Simulation", Computers & Graphics (Elsevier Science), Vol. 24, No. 5, pp. 671-682, 2000.
- [5] J. Berkley, S. Weghorst, H. Gladstone et al, "Banded Matrix Approach to Finite Element Modelling for Soft Tissue Simulation", Virtual Reality Research Development and Application, Vol. 4, pp. 203-212, 1999.
- [6] D. Bielser and M. H. Gross, "Interactive Simulation of Surgical Cuts", Pacific Graphics, pp. 116-125, 2000.
- [7] M. Nakao, T. Kuroda, H. Oyama, M. Komori, T. Matsuda, T. Takahashi, "Combining Volumetric Soft Tissue Cuts for Interventional Surgery Simulation", Proc. MICCAI2002, pp.178-185, 2002.

図 6. 手術アプローチ計画における提案フレームワークの適用: (a) 正中切開 及び(b) 左開胸によるアプローチによって想定される術野と対象部位