
Reducing Thread Divergence in GPU Applications through Memory
Partitioned Streams

Oki Yoshitake
†

 Osaki Keiji
†

International Christian University Graduate School
†

1. Introduction
 The colossal computing capabilities of graphics

processing units (GPUs) have increasingly emerged as

a powerful tool for high performance computing

platforms. However, the parallel architecture of GPUs

has exposed performance issues under conditional

branch scenarios commonly seen in GPGPU

applications, such as the Monte Carlo simulation of

photon migration in Multi-Layered media (MCML).

The lack of complex branch interpreters on GPUs

forces the multi-core hardware to execute thread-level

divergence codes serially, inflicting serious

performance degradations.

 This paper introduces a mechanism for eliminating

thread divergence through CUDA Streams on the

NVIDIA CUDA programming model [1]. This

software-level optimization remaps threads that take

different paths to alternate Streams, allowing divergent

codes to potentially overlap and result in performance

improvement.

2. Control Flow Divergences

Figure 1. Divergence in Warps

2.1 SIMD Architecture
 The architectural philosophy of GPU that inherit

single instruction multiple data (SIMD) architecture

requires that a bundle of threads, or warps, to run a

single issued instruction in a lock-step fashion. As

shown in Figure 1, control flow divergence often

occur in scenarios where some threads execute

different If-else paths of a divergent branch from other

threads that reside in the same warp. Thread

divergence within warps forces the divergent paths to

be executed serially, creating stalled and idle threads

during execution Control flow divergences are known

to cause significant performance degradation due to its

irregular load balancing between threads that take

different paths. This irregular workload limits and

underutilizes the available GPU resource, and is a
main source of bottlenecks for various GPU

applications. Given the advantages of parallelism on

SIMD architectures, an efficient control flow

optimization mechanism is necessary.

3. MCML Simulation

 A typical GPU application that suffers such

irregular control divergences is MCML. MCML is a

Monte Carlo method for modeling steady state light

transport in multi-layered media. MCML on GPUs

begin by launching and injecting millions of photon

packets into a multi-layered media, where each photon

packet motion corresponds to a work done by a single

thread. A possible action for each photon packet at

every time step is a direction update, position update,

or a fluency update. Figure 2a depicts the overall flow

of the photon packets. Each action is dependent on the

outcome of a Pseudo Random Number Generator.

Since each photon, or the corresponding thread, has its

own random number sequence, the propagation of

each thread within a warp is a prime source of control

flow divergence.

 a) MCML b) Modified MCML

Figure 2. Graph a) shows the flow of the original MCML,
graph b) shows the modified flow of MCML

4. Related Works

4.1 Hardware Optimizations
 Dynamic Warp Subdivision rearranges threads

within warps into subdivided warps [2]. This

redirection of threads aims to hide latency by

occupying multiprocessors with newly divided non-

divergent warps. Dynamic Warp Formation combines

threads from multiple warps that suffer from thread
divergence [3]. This optimization regroups any threads

within the whole SIMD scope by matching warps that

share the same Program Counter (PC).

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-63

3J-02

情報処理学会第77回全国大会

4.2 Software Optimizations
 G-Streamline is a framework that integrates a job

swapping mechanism of threads along with data

layout transformations [4]. This method aims to

remove warp-level irregularities and improve

coalesced memory access.

5. CUDA Streams for Removing Irregularity
 In this work, a practical optimization solution is

presented to eliminate control flow divergences

through CUDA Streams. CUDA Streams are a

sequence of operations deployed by the host CPU that

can execute simultaneously on the device GPU. By

exploiting the concurrency mechanism of CUDA

Streams, kernels with branch divergences can be split

and launched simultaneously on the GPU. The

modified flow of this optimization for MCML is

shown in Figure 2b.

5.1 Splitting Divergent Kernels
 The main idea for utilizing CUDA Streams to

eliminate branch divergence is to divide the divergent

path into two independent kernels, as shown in Figure

3. After all photon packets are initialized at the

initialization kernel, work will be split into two new

kernels. Each divided kernel is only responsible for a

single path in the original divergent code, and will

reference the GPU memory that is divided according

to the two corresponding CUDA Streams. Furthermore,

the two independent kernels created under different

CUDA Stream instances are executed simultaneously.

Figure 3. Kernel1 and Kernel2 executed under different CUDA
Streams

Figure 4. Execution time of kernel splitting with CUDA
Stream and the original branch code in microseconds

5.2 Analysis
 Rearranging the main kernel into two non-divergent

kernels reduces the serialization of branch condition

statements as well as the amount of registers required

per thread, preventing thread-level resources from

limiting the occupancy of the SIMD multiprocessors.

 The results shown in Figure 4 does not reflect a full

implementation of the presented MCML optimization,

but a test case for simulating a single iteration step

with 100,000 photon packets. The results show the

two split kernels working in an overlapping fashion,

leading to a 1.2x speedup from the original execution.

This benefit will be obtained for every subsequent

time step of the simulation, resulting to a more

significant speedup to the overall execution. Unlike

inter-warp or intra-warp thread rearrangements done

in previous studies, this kernel splitting optimization

allows multiprocessors to execute both kernels

without any transformations prior to each time step,

minimizing overhead for every kernel launch.

6. Conclusion and Future Work
 In this paper, an optimization technique is proposed

to eliminate branch divergences and improve control

flow irregularities. The method employs CUDA

Streams to allow kernels to run each path of the

divergent branch concurrently. After splitting the

kernel, warps can exploit hardware resources without

being bounded by registers or transformation

overheads. For future work, the optimization should

be fully implemented along with an efficient

mechanism for improving photon packet data

movements between resources for every iteration step.

7. References
[1] NVIDIA Corporation. NVIDIA CUDA

Programming Guide, 6.5 edition, 2014.

[2] W. Fung, I. Sham, G. Yuan, and T. Aamodt.

Dynamic warp formation and scheduling for efficient

gpu control flow. In MICRO, 2007.

[3] J. Meng, D. Tarjan, and K. Skadron. Dynamic

warp subdivision for integrated branch and memory

divergence tolerance. In ISCA, 2010

[4] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X.

Shen. On-the-fly elimination for dynamic irregularities

for gpu computing. In ASPLOS, 2011.

Copyright 2015 Information Processing Society of Japan.
All Rights Reserved.1-64

情報処理学会第77回全国大会

