
Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 1

Study on Distributed NoSQL Database on Embedded System

for Low-power IoT

PAETHONG PORNPAT†1 MITARO NAMIKI†1

Abstract: The world is moving toward the era of Internet of Things (IoT). Internet of things provided an internet-based platform

for devices to communicate, exchange information, make decision, invoke action in order to provide services. The advancement

of IoT will bring upon a new era of computing and communication to improve people’s life. The most essential part of IoT is the

database which collect and store information from different sensors on the device. In general cloud computing is uses to process

these information, however, using cloud computing means every IoT devices need to have internet connection. The drawbacks of

this method included high cost and high consumption of energy. To solve this problem a method of using credit-card sized

computer is purposed. These devices are cheap and energy efficient, but still provide enough computing power. The purpose of

this paper is to demonstrate and explain how to construct database server for IoT middleware using low energy computing

devices such as Raspberry Pi as an alternative to the traditional method of cloud computing.

Keywords: Credit-card Sized Computer, Distributed Database, Embedded System, Internet of Things, MongoDB, NoSQL

Database, Low-power, Raspberry Pi

1. Introduction

The most essential part of IoT is the database [1] which

collect and store information from different sensors on the

device. In general cloud computing is uses to process these

information, however, using cloud computing means every IoT

devices need to have internet connection. The drawbacks of this

method included high cost and high consumption of energy. To

solve this problem a method of using credit-card sized computer

is purposed. These devices are cheap and energy efficient [3-5],

but still provide enough computing power. The purpose of this

paper is to demonstrate and explain how to construct NoSQL

database server [6] for IoT middleware using low energy

computing devices such as Raspberry Pi as an alternative to the

traditional method of cloud computing.

2. Issues and Goals

Usually, IoT databases, which are based on cloud computing,

have high reliability, redundancy, security, and processing power

[2]. The drawbacks of the cloud database are the cost, required

internet connection, limited bandwidth, and high power

consumption. These drawbacks make cloud database not

suitable for household, office, or farm. In such case the IoT

server do not require a lot of processing power, an alternative

database server such as Raspberry Pi can be implement. The

benefits of database on Raspberry Pi included, local-base

storage, affordability, and energy consumption, while also open

new possibility for future IoT second database hardware.

3. System Structure and Design

The system contained two main parts: master node and data

nodes. The two nodes work together as a single system; the

master node is able to connect to other data nodes, while the

data node is able to connect to master nodes as well as other

nodes in the system as shown in Fig.1.

 †1 Tokyo University of Agriculture and Technology

Fig.1: System Structure and Design

Every node, each runs MongoDB (which work as NoSQL

database server), work completely independent from each other

(individual running) to store and process information from the

sensor hardware that it's connected to. For data distribution,

each node has a metadata table, which contained information

about the node's data such as temperature, pressure, humidity,

and etc. The Fig.2 shows how the node distributes these data to

other node, as a result creating an information network between

itself and other nodes.

Master node, which act as a proxy server, when it receives

query command from client, it will find alternative data nodes

by looking at metadata table. Then, it forward that query to

alternative data nodes. Finally, it will combine all data from data

node and respond to client.

Data node, which act as a data storage, it will receive and

store a data from connected sensor hardware. Moreover, it will

execute a query command from client via master node.

4. Distribution Algorithm

4.1 MongoDB Sharding

Sharding is the process of storing data records across

multiple machines and it is MongoDB's approach to meet the

demands of data growth. As the size of the data increases, a

single machine may not be sufficient to store the data nor

provide an acceptable read and write throughput. Sharding

solves this problem with “horizontal scaling”, by adding more

Journal of Information Processing

ⓒ2016 Information Processing Society of Japan 2

machines to support data growth and the demands of read and

write operations.

 In replication, all writes go to master node

 Latency sensitive queries still go to master

 Single replica set has limitation of 12 nodes

 Memory can't be large enough when active dataset is

big

 Local Disk is not big enough

 Vertical scaling is too expensive

4.2 Basic Distribution Algorithm

Due to that all node work independently, the problem is how

to synchronize each node. This problem can be solved by using

metadata synchronization (as config server component of

normal MongoDB sharding). When each data nodes have

metadata table on their own database that contains data key, IP

address, last active, etc. to reference to each other data node. It

can directly access and get the target data. Mover, MQTT

protocol will use for synchronize all metadata on each data node,

when some node has inserting, updating event.

4.2.1 Compression with MongoDB Sharding

First, the client must connect to a router (mongos), but in

this case the client can connect directly to data nodes (mongod)

(In fact, Rasperry Pi have to connected with sensor hardware,

via GPIO, to get sensor data and store it into database). Second,

MongoDB sharding will use metadata on config server for

accessing to shard node, but in this case I use metadata table on

its database. Last, Traditional MongoDB sharding have to

always synchronize and balance the data on each shard node,

which make it impossible to reduce energy consumption. My

proposed solution of using database event and MQTT will make

this possible.

4.2.2 Consistency Model

Firstly, the data node will self-manage its data. Second, each

data nodes will have metadata table on their own database. It is

used for mapping and accessing data from other nodes. Last,

when some data nodes fire event of inserting or updating a new

type of sensor (new key), they will broadcast a message to each

node to updates its metadata table and checksum value.

4.2.3 Methods

Frist, Handling data changed events by modifying

MongoDB core (mongod) and/or MongoDB driver libraries.

Second, MQTT with QoS 2 is used for message exchanging in

bi-directional communication as shown in Fig.3.

Fig.3: Metadata with MQTT Message Exchanging

5. Current progress and Conclusion

We compared x86 machine and Raspberry Pi for the

operation time and power which showed that our solution looks

promising. With evaluation environment, MongoDB version

2.4.10 for Raspberry Pi 2 Model B of 900MHz quad-core ARM

Cortex-A7 CPU, 1GB of memory, 16GB of SD card as

local-base storage and Raspbian of operating system.

We evaluated the MongoDB MongoDB (Individual

Running) and MongoDB Sharding on 4 x Raspberry Pi for

database performance and energy usage.

Table 5.1: Database Performance Comparison

Database

Performance

MongoDB

(Individual

Running)

MongoDB

Sharding on

4 x Raspberry Pi

Inserting Time 475 seconds 4,875 seconds

Insert per Second (IPS) 3,363.17 328.14

Online Transaction

Time

580 seconds 600 seconds

Transactions per

Second (TPS)

12.83 11.74

Table 5.2: Energy Usage Comparison

Energy MongoDB

(Individual

Running)

MongoDB

Sharding on

4 x Raspberry Pi

Idle mA 250 mA (1,000 mA) 1,000 mA

Avg. Execution mA 300 mA (1,200 mA) 1,250 mA

Inserting Energy (J)

142.5 kJ (570 kJ) 6,093.75 kJ

Transaction Energy (J) 174 kJ (700 kJ) 750 kJ

Table 5.1 shown that inserting performance of MongoDB

(individual running) was faster than MongoDB sharding, and

insert per second (IPS) performance was higher than MongoDB

sharding. For online transaction and transactions per second

(TPS) performances, they are almost the same value. Moreover,

table 5.2 shown about MongoDB (individual running) was used

energy less than MongoDB sharding.

In conclusion, MongoDB as individual running on

Raspberry Pi is faster and low-power than traditional sharding.

The credit-card sized computer hardware and MongoDB

database engine can be implemented as a simple, flexible and

affordable database server for IoT middleware in the future.

References
[1] Gubbi, Jayavardhana, et al. “Internet of Things (IoT): A vision,

architectural elements, and future directions.” Future Generation
Computer Systems 29.7, pp. 1645-1660, 2014.

[2] Zarghami, Shirin. “Middleware for Internet of things.”, 2013.

[3] Brock, J. Dean, Rebecca F. Bruce, and Marietta E. Cameron.
“Changing the world with a Raspberry Pi.” Journal of Computing
Sciences in Colleges 29.2, pp. 151-153, 2013.

[4] Anwaar, Waqas, and Munam Ali Shah. “Energy Efficient
Computing: A Comparison of Raspberry PI with Modern Devices.”
Energy 4.02, 2015.

[5] Maksimović, Mirjana, et al. "Raspberry Pi as Internet of things
hardware: performnces and constraints." Design Issues 3, pp. 8,
2014.

[6] Parker, Zachary, Scott Poe, and Susan V. Vrbsky. “Comparing
NoSQL MongoDB to an SQL DB.” Proceedings of the 51st ACM
Southeast Conference. ACM, 2013.

