
1

IaaS 環境における Warm-Cache DBMS インスタンス生成手法

福 地 開 帆 † 山 田 浩 史†

1. Introduction

Database management systems (DBMSs) are an

essential component of web services and the perfor-

mance of DBMSs is a dominant factor to the quality

of the service. In Infrastructure-as-a-service (IaaS)

platforms, users can scale up and down their ser-

vices to dynamic workloads by adjusting the num-

ber of virtual machines running DBMSs (DBMS in-

stances). Some cloud venders offer supports to eas-

ily manage DBMS instances. For example, Amazon

RDS provides well-configured VMs running a famil-

iar DBMS such as MySQL and PostgreSQL, and

enables us to scale up the DBMS for read-heavily

workloads such as business analysis by launching

one or more DBMS instances with the read-only

DB whose contents are the same as one of the al-

ready running DBMS.

However, handling burst workloads is still diffi-

cult even for read-only requests. The throughput of

a DBMS is not high just after launching the DBMS

instances due to frequent DBMS’s cache misses.

When the buffer pool of the DBMS does not have

target data, the DBMS has to fetch it from much

slower disks than memory. Since disks are basically

shared with cloud users’ instances and receive a

huge amount of requests, warming the DBMS cache

takes long time and the I/O performance is not sta-

ble. To successfully handle burst requests, users are

required to launch redundant DBMS instances and

redirect coming requests to the instances to warm

the buffer pool of the DBMSs. As a result, users

have to perform error-prone and difficult adminis-

trative tasks such as an appropriate prediction of

redundant DBMS instance number and a careful

configuration of load balancers for the request redi-

rection.

To release users from these tasks, this paper

presents a hypervisor-level mechanism to achieve

† 東京農工大学
Tokyo University of Agriculture and Technology

high performance of DBMSs just after launching

the DBMS instances. Our key insight behind this

approach is to warm up new DBMS’s buffer pool

by leveraging the already-running DBMS’s one, in-

stead of issuing disk reads. Specifically, our mecha-

nism tracks DBMS’s read requests to disks, memo-

rizes which memory pages contain DB data, and

shares pages containing the same DB data with

the original DBMS instance. By this page shar-

ing, the new instantiated DBMS fetches requested

data without slow disk accesses. Note that we as-

sume that new launched DBMS instances have the

same DB as the original running DBMS instance’s

one like Amazon RDS described above.

2. Approach

This idea is based on hypervisor-level advanced

page sharing mechanisms1),2). For example,

Satori2) provides a copy-on-write sharing disk to

VMs, checks block numbers in VMs’ read requests

to the disk, and share the page if the requested

block has been read already and placed into a page

of other VMs. They can effectively share pages of

kernel level buffer cache among VMs, but do not

work for DBMS buffer pools since a hypervisor does

not have any knowledge about which pages contain

DB data and which DB data is contained in a page.

To track memory pages into which DB data read

from disks is placed, our mechanism adds to disk

read requests IDs that are unique for every DB data

in a DBMS. For example, the ID of MySQL, which

is a relational DBMS, consists of a pair of the space

number and the offset. The ID of Riak, which is a

key-value store, is the key number. The DBMSs

pass IDs to the guest kernel through a new system

call in reading data from disks. The guest kernel

put the IDs to disk read requests that are inter-

cepted by the hypervisor. Our mechanism man-

ages a map table that associates the IDs with the

address of the machine page into which the read

data is placed. If the ID of the read request from



2

DBMSs is in the map table, our mechanism map

the machine page to the page in the map table in

a copy-on-write manner.

3. Current Status

We have implemented a prototype into Xen 4.2.1

and tailored MySQL 5.6.14 and Linux 3.11.5 to the

prototype. We conducted a preliminary experiment

and its result demonstrates that our approach sig-

nificantly outperforms the conventional method of

generating a read replica.

参 考 文 献
1) K.Miller, F.Franz, M.Rittinghaus, and M.Hil-

lenbrand. XLH: More Effective Memory Dedu-

plication Scanners Through Cross-layer Hints.

In Proc. of the USENIX ATC ’13, pages 279–

290.

2) G. Milos, D. G. Murray, S. Hand, and M. A.

Fetterman. Satori: Enlightened page sharing.

In Proc. of the USENIX ATC ’09, pages 1–14.


