
1

プロセスのメモリオブジェクトを再利用する OS カーネルアップデート手法

寺 田 献 † 山 田 浩 史 †

Operating system (OS) kernel updates are a part

of daily life in contemporary computer systems in-

cluding high-end servers in data centers as well as

desktop PCs and smartphones. Kernel updates are

announced frequently because OS kernels are still

being developed to improve their performance, add

new functionality, and repair security vulnerabili-

ties. Although announced updates should be ap-

plied as soon as possible since they often include

critical vulnerability fixes, kernel updates usually

require an OS reboot that involves the restart of not

only the kernel but also all of the software, causing

downtime that can disrupt software services run-

ning on the kernel. This negative impact is a big

hurdle to readily conduct kernel updates.

Various researchers have tackled this issue so far.

The dynamic kernel update (DKU) is a represen-

tative approach to applying patches to the kernels

at runtime1),3). Since DKU does not require an

OS reboot in the kernel update, its downtime is

almost zero. But, DKU applicability is inherently

limited. Some DKU systems are difficult to up-

date data structure types and non-quiescent kernel

functions that are always on the call stack of kernel

threads. Also, DKU sometimes requires the devel-

opment of special patches from the original ones,

which means OS kernel knowledge at the source-

code level is necessary to use. This is non trivial

since recent kernels are more complex and some are

closed-source and/or proprietary.

The reboot-based kernel update is an attractive

approach to efficiently manage an OS reboot for

the update. The use of the process migration tech-

niques moves the processes to another machine un-

til the OS reboot completes2),4). Another technique

leverages virtual machine technology to generate a

virtual machine memory image that is after the OS

reboot6). The other one is to preserve running pro-

cess states across OS reboots5). These approaches

† 東京農工大学
Tokyo University of Agriculture and Technology

can deal with more types of kernel updates since

the conventional kernel update procedure is con-

ducted, but the reboot-based kernel update is not a

perfect solution. The process migration approaches

are resource-consuming; these requires redundant

resources that include the same memory size of the

updated machine. The other approaches cause non-

negligible downtime; we have to restart processes or

wait for the kernel boot.

Our goal is to overcome the drawbacks of the

reboot-based kernel update. This paper presents

Nap, a reboot-based kernel update approach whose

downtime is shorter and resource consumption is

much less than the conventional ones. Nap launches

the newer kernel in the background on the same

physical machine, and forces the kernel to inherit

the running states of the older kernel. Nap makes

downtime as short as possible by keeping the run-

ning states of processes and switching the newer

kernel just after it becomes ready. In addition, Nap

requires much less memory by efficiently moving the

running process states from the older to the newer

kernel.

Nap is a thin layer running between hardware

and the OS kernel like a hypervisor. Our ap-

proach orchestrates Nap and the OS kernel. To

boot the newer kernel in the background, Nap lever-

ages memory and CPU virtualization. After a ker-

nel has been patched, Nap boots the patched ker-

nel while the older kernel is running. The kernel

starts to inherit the running states of the older one

after its initialization. To inherit the running pro-

cess states, Nap receives essential contexts from the

older kernel and passes them to the newer one. An

essential context is a kernel object related to a pro-

cess state necessary to restart the process, such as

PID, CPU registers, memory maps, and so on. The

newer kernel recreates processes based on the es-

sential contexts. The user-level memory regions in

the older kernel are reused. The newer kernel is re-

sumed just after receiving all the essential contexts.

At the same time, the attachment and detachment



2

of the devices in the newer and older kernel are done

in parallel. The newer kernel attaches the detached

devices one after another.

We are implementing a prototype of Nap on

Linux 2.6.39.4 and Xen 4.5.0. The domU

is attached to NIC and storages through PCI

passthrough. We conducted a preliminary ex-

periment with the prototype. We measured the

save/restore time of the running processes whose

memory size is different (16, 64, 256, 1024, and 4096

MB). The result shows that save/restore times are

increased as the memory size is more. The save

times are less than 500 ms in all the cases. The

restore times except for the 4096 MB case are less

than 600 msec. The restore time in the 4096 MB

case is more than 1 second. Since our prototype is

premature, we expect that this time becomes much

shorter.

参 考 文 献

1) J. Arnold and M. F. Kaashoek. Ksplice: Au-

tomatic Rebootless Kernel Updates. In Proc.

of the 4th ACM European Conference on Com-

puter Systems (EuroSys ’09), pages 187–198,

2009.

2) D. E. Lowell, Y. Saito, and E. J. Samberg. De-

virtualizable Virtual Machines Enabling Gen-

eral, Single-Node, Online Maintenance. In

Proc. of the 11th ACM International Confer-

ence on Architectural Support for Programming

Languages and Operating Systems (ASPLOS

’04), pages 211–223, 2004.

3) K. Makris and K. D. Ryu. Dynamic and

Adaptive Updates of Non-Quiescent Subsys-

tems in Commodity Operating System Ker-

nels. In Proc. of the 2nd ACM European Con-

ference on Computer Systems (EuroSys ’07),

pages 327–340, Mar. 2007.

4) S.Potter and J.Nieh. Reducing downtime due

to system maintenance and upgrades. In Pro-

ceedings of the 19th USENIX Large Installation

System Administration Conference (LISA ’05),

pages 47–62, Dec. 2005.

5) M.Siniavine and A.Goel. Seamless Kernel Up-

dates. In Proc. of the 43rd Annual IEEE/IFIP

International Conference on Dependable Sys-

tems and Networks (DSN ’13), pages 1–12,

2013.

6) H.Yamada and K.Kono. Traveling Forward in

Time to Newer Operating Systems using Shad-

owReboot. In Proc. of the 9th ACM Interna-

tional Conference on Virtual Execution Envi-

ronments (VEE ’13), pages 121–130, 2013.


