
IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 1

Towards Exchanging Connection Information by Using the

Blockchain Technology for Decentralized Social Networking Services

Yi ZHOU 1 Yasushi SHINJO 1 Kazuki TAKARADA 1

Zhiyuan LIN 1

1. Introduction

With the development of society and technology, we are enjoying

the convenience brought by the Internet but it also highlights some

drawbacks. For example, many popular SNSs (Social Networking

Services) such as Facebook and Twitter and many cooperative

services such as Dropbox are centralized systems which require

users to exchange their private information through centralized

servers. These centralized architectures are always controlled by

specific organizations that have unlimited power over users'

information and they can manage the systems as they wish. In

addition, the breakdown of central servers may lead to series of

problems such as information loss or data breach.

To solve these problems, we are building a decentralized SNS. In

this SNS, users can communicate with the following channels.

⚫ Web Realtime Communication (WebRTC) for web browsers.

⚫ Virtual Private Networks (VPNs) for desktop PCs [1].

⚫ Session Initiation Protocol (SIP) for mobile devices tools [1].

In these social channels, before two nodes are able to comm-

unicate, they must do the following things.

⚫ Exchange connection information. A node must know the IP

address or other location information of the other node. In

addition, WebRTC needs complex exchanging of messages

based on session description protocol (SDP).

⚫ Perform user authentication each other.

We are implementing these things by using the blockchain

technology. Before two nodes communicates, they exchange

connection information with smart contracts of the blockchain

technology. At this time, they perform user authentication using

blockchain wallets.

2. Target communication channels

2.1 WebRTC

 WebRTC provides peer-to-peer (P2P) communication channels

among web browsers. The design of WebRTC focuses on

communication between browsers via network address translation

(NAT) routers. It appears to be a promising mechanism for

addressing the problems of centralized servers. However,

establishing WebRTC channels usually requires web servers [2].

Before two peers communicate with each other through WebRTC,

they must exchange short messages. This process is called

signaling, which usually requires a centralized server.

 The signaling process of WebRTC includes the following four

protocols: Session Description Protocol (SDP), Interactive

Connectivity Establishment (ICE), Session Traversal Utilities for

 1 University of Tsukuba

NAT (STUN) and Traversal Using Relays around NAT (TURN).

STUN and TURN are options for enhancing the reachability for

peers behind NAT routers.

To achieve our goals, we must implement signaling without

centralized servers. In our decentralized SNS, we implement a

smart contract that realizes signaling of WebRTC.

2.2 VPNs and SIP

VPNs enables users to send and receive data across public

networks as they are directly connected with a private networks. In

our decentralized SNS, establishing a VPN channel requires

obtaining the IP addresses of peers [1].

 Session Initiation Protocol (SIP) is a signaling protocol used for

initiating, maintaining and terminating real-time sessions that

include voice, video and messaging applications. In our

decentralized SNS, users run SIP servers at home and they connect

with friends’ servers. Before two SIP servers establish a SIP

connection, they need the IP addresses of peers [1].

In our decentralized SNS, we implement a smart contract that

realizes the exchange of IP addresses. Exchanging IP addresses is

much easier than exchanging WebRTC signaling messages. We

implement the former by simplifying the latter. In the following

sections, we focus on the former.

3. WebRTC signaling with a smart contract

 In our decentralized SNS, web browsers are connected with

WebRTC in a P2P manner. We implement an Ethereum smart

contract that performs WebRTC signaling. When two peers are not

behind symmetric NAT routers and one of the peers has a public

IP address, the signaling can be done by exchanging two messages

of SDP via the smart contract. An SDP message includes basic

parameters to establish connections using ICE, namely IP

addresses, port numbers and session public keys of peers which

will be used for end-to-end encryption of the WebRTC connections.

In the Ethereum blockchain, when a node sends a transaction

message to a smart contract, the smart contract knows the wallet

address of the sender. A smart contract can emit events, which are

much cheaper than contract storage. A node can watch events that

include its wallet address.

 Figure 1 shows a signaling process using the smart contract. In

our decentralized SNS, two friends exchange their wallet addresses

of Ethereum in advance. This smart contract has two functions:

offer() and answer(). When two Peers A and B establish a WebRTC

connection, Peer A creates an SDP offer message by calling the

WebRTC API RTCPeerConnection.createOffer() of the web

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 2

Figure 1: WebRTC signaling with a smart contract.

browser. Next, Peer A calls the function offer() of the smart

contract with two arguments: the wallet address of Peer B and the

SDP offer message. The function offer() emits an event, and a node

that is watching the event log receives the event. When Peer B

receives a new Offer event, Peer B extracts the address of Peer A

and the SDP offer message in the event. After that Peer B creates

an answer message of SDP by calling the WebRTC API

RTCPeerConnection.createAnswer() of the web browser, using the

received SDP offer message. Then Peer B sends this SDP answer

message to Peer A in the reverse direction using the same smart

contract. Finally, Peer A and Peer B establish a WebRTC

connection.

We have implemented this signaling mechanism, and performed

several experiments in the Ethereum test network Ropsten by using

Ethereum client geth version 1.9.23. The execution times of

signaling with the smart contract were 20 to 60 seconds. This time

is affected by the block interval of the Ethereum network.

 This signaling with the smart contract is slow and using it directly

is impractical for applications including text chat and video calling.

We solve this problem by exchanging signaling messages through

WebRTC data channels. When a user boots a web browser, it

establishes the WebRTC data channels with those of the user’s

friends by using the slow smart contract. This can take several

minutes. When the user executes an application, video calling for

example, the web browser exchanges the signaling messages

through an existing WebRTC data channel to a friend.

4. Privacy enhanced signaling with smart

contract

A blockchain is a shared database in essence. The data or

information stored in it has the characteristics of unforgeable,

traceable, open and transparent. Every transaction we conduct on

the blockchain can be traced. The information of a wallet address

can also be traced. If we continue to use a fixed wallet address, the

information we exchange is easily traced, and this causes a privacy

issue.

We solve this problem with warpwallets [3]. A warpwallet is a

deterministic address generator in a blockchain. A warpwallet can

generate multiple deterministic wallet addresses through a

passphrase and a salt string entered by a user.

In our decentralized SNS, we are implementing WebRTC

signaling using warpwallets. The wallet address of each user

changes according to the passphrase and salt sequence. For each

user, we give a random user ID and use it as a salt string. We

include a date string to a random passphrase. For example, a user

can use “Picard Delta 5 2020-12-01” as a passphrase. When two

users establish a social relationship in our decentralized SNS, they

exchange the random user IDs and prefixes (without the date

string) of passphrases. When a user performs WebRTC signaling,

the user uses the address of the warpwallet with the date string of

the day instead of the fixed wallet address.

5. Related work

Twister [4] is a distributed microblogging social network

modeled after Twitter. It utilizes a blockchain for user registration

and a Distributed Hash Table (DHT) for routing and indexing of

peers and contents. SAND [5] utilizes Social VPNs to establish

peer-to-peer connections between trusted friends and distribute

social media contents reliably through the VPN connections. In

research, we establish peer-to-peer channels of WebRTC, VPN and

SIP by the blockchain technology.

6. Conclusion

This article proposes a method of exchanging connection

information using a smart contract in a blockchain network for

building a decentralized SNS. We have implemented the smart

contract that exchanges SDP messages and IP addresses with fixed

normal addresses. While the signaling using this smart contract is

slow, it is done once at the boot time. We are solving the privacy

problem of fixed addresses by using deterministically changing

wallet addresses of warpwallets.

Reference
[1] Takarada, K., Shinjo, Y., Zhou, Y. and Lin, Z.: “Towards the

implementation of social communication channels powered by

distributed ledger”, IPSJ Computer Symposium Post Session (2020).

[2] Sredojev, B., Samardzija, D. and Posarac, D.: "WebRTC technology

overview and signaling solution design and implementation," 2015

38th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), Opatija, ,

pp. 1006-1009, doi: 10.1109/MIPRO.2015.7160422 (2015).

[3] Krohn, M. and Coyne, C.: warpwallet, GitHub repository,

https://github.com/kebase/warpwallet (2017).

[4] Freitas, M.: “Twister: the development of a peer-to-peer microblog-

ing platform”, International Journal of Parallel, Emergent and Dis-

tributed Systems, Vol.31, No.1, pp.20–33 (2016).

[5] Ding, D., Conti, M. and Figueiredo, R.: “Sand: Social-aware,

network-failure resilient, and decentralized microblogging system”,

Future Generation Computer Systems, Vol.93, pp.637–650 (2019).

