Applying Kerberos to the Communication Environment for Information Appliances

Shoichi SAKANE and Nobuo OKABE (Yokogawa Electric Corporation) Ken-ichi KAMADA and Hiroshi Esaki (The University of Tokyo)

Contents

- \Box Background and our forcus
- Requirements
- □ Applying Kerberos to the environment
- \Box Future study items
- \Box Conclusions

Background and our forcus

IPv6 technology can assign global addresses to lots of devices.
 Network capability will be implemented on the home appliances.

 \Box This environment will challenge a set of new requirements.

 \Box We focus on the security of the home appliances.

Requirements

Access control between devices must be achieved.
 Secured IP address resolution should be needed.
 Setting up secured communication is mandatory.

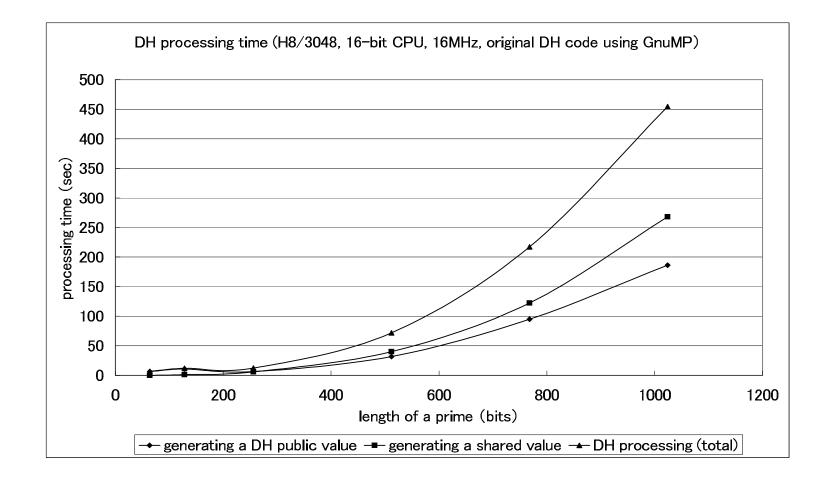
Access control

- \Box Access control is obviously required.
- \Box It is not restricted by network topology.
- \Box Access control should not depend on IP addresses.
- \Box Restricted devices should access to the home appliances.

Secured IP address resolution

 \Box IPv6 automatically generate the IP addresses of the devices.

 \Box The device has to resolve the auto-configured IP addresses.


 \Box This address resolution procedure must be performed securely.

Setting up secure communication

- \Box The secured communication is required.
- \Box IPsec provides confidentiality and integrity.
- □ The peering communicating devices have to share a symmetric key
- □ IPSEC-WG has standardized IKE based on asymmetric cryptography

Computational cost of asymmetric cryptography

 \Box IKE is not suitable for the cost-sensitive devices. \Box We need to define the other key exchange mechanism.

Applying Kerberos to the environment

What is Kerbros ?

□ Based on symmetric cryptography.

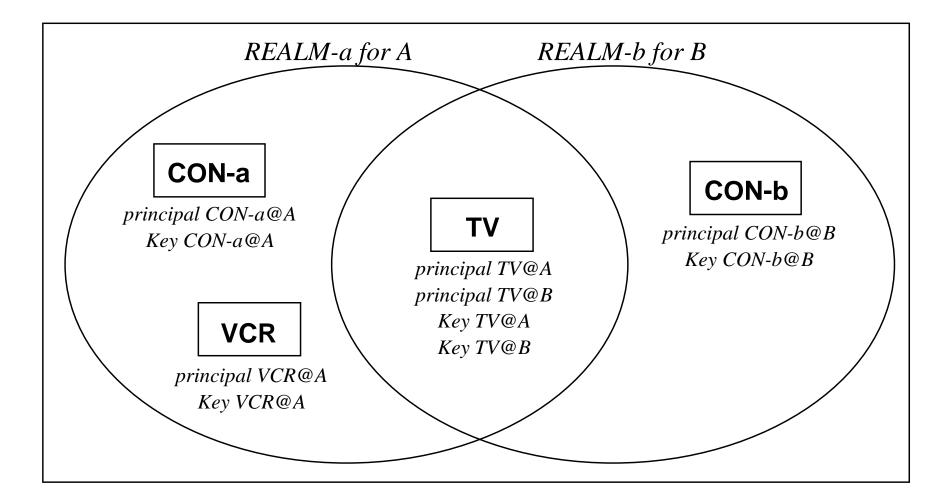
 \Box Authenticating the nodes and to encrypt the communication between

them.

^oIndependent of the authentication system in the host OS.

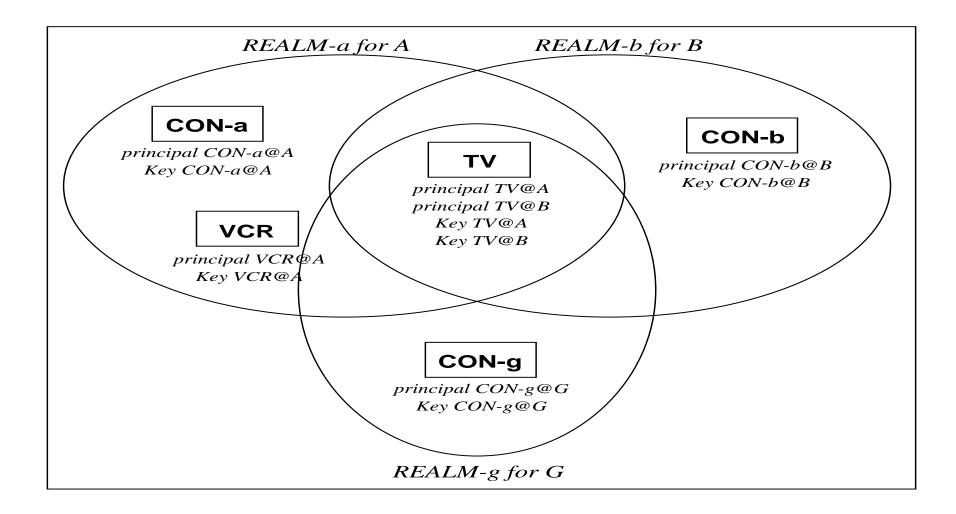
Independent of IP addresses.

○ Independent of any network topology.


 \Box Compatible with the cost-sensitive devices.

What is Kerbros ?

- \Box Maintain the information of devices on the central server (KDC).
- \Box The number of devices in the home network could be small.
- □ The centralized management model is appropriate.


Access control

□ Access control is achived by the fundamental function of Kerberos.

Access control of guest devices

 \Box Access control of a guest is achived by the another realm.

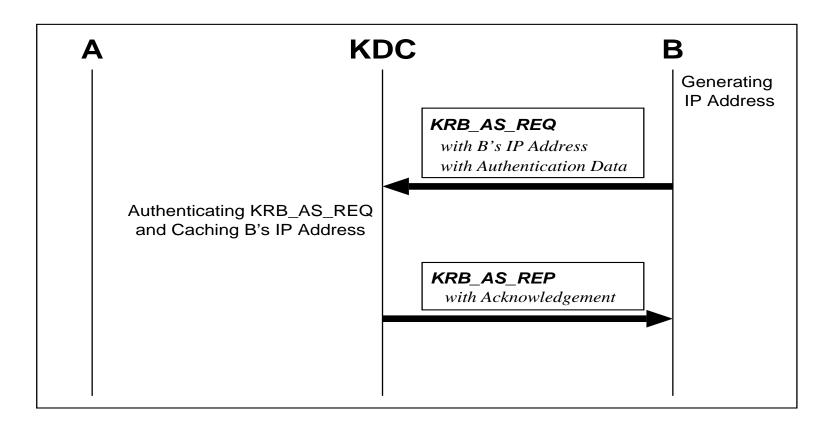
Secured IP address resolution

 \Box The KDC could replace the name server.

□ KRB_AS_REQ is sent to the KDC when the devices connect to the

nętwork.

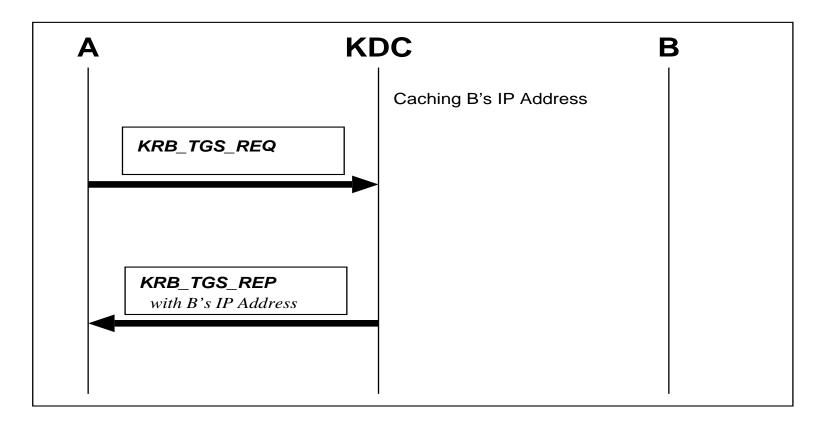
^o It could be used to register the IP address to the KDC.


□ KRB_TGS_REQ is sent to the KDC when the devices initiate a

communication with the other. It could be used to resolve IP addresses.

Registering IP address

□ There is a message called KRB_AS_REQ when the devices connect to


the network.

Resolving IP address

□ There is a message called KRB_TGS_REQ when the device start to

communicate with the other.

Modification to Kerberos

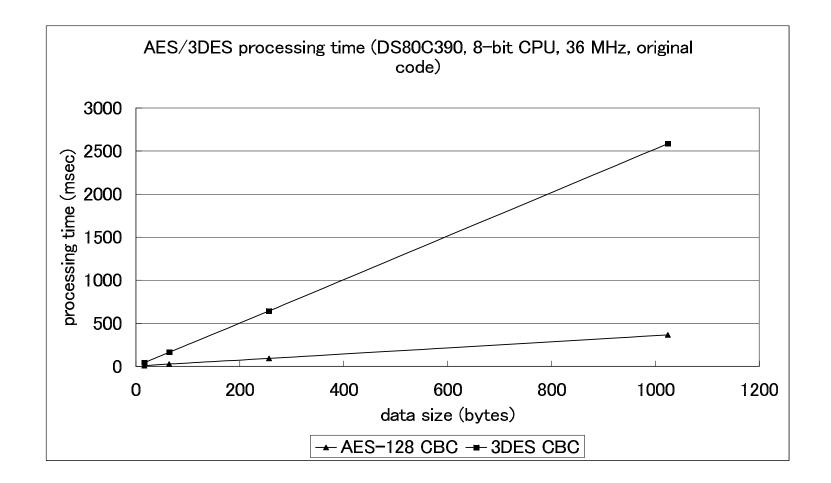
□ The optional field containing IP addresses in KRB_AS_REQ must be

<u>u</u>sed.

☐ The field containing IP addresses in KRB_TGS_REP must be added.
○ There is no address field defined in KRB_TGS_REP message.

Sharing a symmetric key by KINK

 \Box KINK is based on Kerbros.


 \Box It means that KINK is based on symmetric cryptography.

□ The required computational cost will be significantly lower than

asymmetric cryptography.

Computational cost of symmetric cryptography

 \Box KINK can be suitable for the cost-sensitive devices. \Box We propose KINK to share a symmetric key for network appliances.

Future study items

The inter-realm communication of Kerberos.

- \Box Some devices belong to only each individual.
- \Box For example, IP phones belong the different realms
- □ However an IP phone needs to communicate with the other phones.
- \Box The inter-realm communication of Kerberos is required in this case.

Achieving integirty depends on the internal clock.

□ The authentication method of some Kerberos messages should be

_improved.

 \Box Because it depends on accuracy of the internal clock of the devices.

□ We can not trust the clock of the cost-sensitive or physically-restricted

_devices.

 \Box We need to improvement the method of achieving integrity.

Consider IP addressses to be registered

 \Box A node can have several IP addresses.

 \Box There are some scopes in IPv6 address architecture.

 \Box There is a possibility that the communication will be impossible.

 \Box We must consider which address to be registered to the KDC.

Conclusions

□ The requirements for Information appliances

Access control

○Plug and play

• Secure communication

□ Kerberos proposed in order to achieve above requirements

Access control by using separated realms.

• The address resolution mechanism with modified messages of Kerbero

○KINK as the method to establish secure communication.

 \Box We described some future study items

- The inter-realm communication of Kerberos is required in this case.
- •We need to improvement the method of achieving integrity.

• Consider IP addresses to be registered to KDC.

That'it.

Why IPsec ?

□ Why we have choiced IPsec for securing the end-end communication.
 □ IPsec has been choiced by elimination.

Why IPsec?

 \Box proprietary methods should not used.

 $^{\rm O}{\rm we}$ should choice an open standard.

○ it is not easy to design security protocols for each application.

o some closed environments might choice this way.

 \Box SSL, SSH might not be used.

othese methods only protect the communication on TCP.

 \circ asymmetric cryptography could not be suitable for home appliances.

○it could protect the communication on IP.

ohowever it requires some light key configuration methods for home

appliances.

other protection method could be used on IPsec or without using IPsec.