Implementing IPv6: experiences at KAME project

Jun-ichiro Hagino, IIJ research laboratory
itojun@{iiijlab.net,kame.net}
Outline

- What is IPv6, and why IPv6 (brief summary)
- What is KAME project
- Some technical insights observed at KAME
- Implementation status
- What are the TODOs, issues from both specification/implementation
What is IPv6?

- Expansion of address space - 32bit -> 128bit
 - 32bit: 4.3 billion nodes maximum
 - not sufficient, blocking new IP-based applications from appearing
 - 128bit: 3.4 \times 10^{38} nodes maximum

- Make new technologies mandatory
 - IPv4: designed in 1970’s
 - IPv6: designed in 1990’s
 - autoconfiguration, multicast, security, ...

- Why? - IPv4 address space is filled up, NAT is killing us all
- When? - Already there, so you should
- How? - (next slide)
How to operate IPv6?

- IPv6 is "IP with bigger address space", almost no difference with IPv4
 - bigger address space makes a huge difference

- Base spec
 - NAT-free 128bit address, simpler base header, extensible header format
 - Enables many future application deployment and uses

- Routing - OSPFv3, RIPng, BGP4+

- QoS - diffserv, RSVP (separate effort from IPv6 itself)
 - more friendly than IPv4

- Mobility - mobile-ip6
 - No foreign agent necessary

- Security - IPsec (separate effort from IPv6 itself)
 - A "fully conformant IPv6 implementation" must have IPsec code

- Autoconfiguration
 - stateless autoconf, DHCPv6

- Multicast - PIM, MLD (= IGMP)

- Applications - HTTP, FTP, VoIP, whatever you do with IPv4
 - New applications would appear when IPv6 hits the critical mass
Problem we had in 1995...

- IPv6 specification is out, but there's no codebase/testbed

- "No codebase" means "high deployment hurdle"
 - IPv4 was deployed because it was bundled into BSD and other operating systems
 - BSD served as the reference codebase for others
 - With IPv6, only spec is there, no code

- We don't really know if the spec will work fine or not
 - Need to check if specification works right, by actual operational experiences

- Our answer:
 - WIDE IPv6 backbone: IPv6 network operation, with real daily traffic
 - KAME project: IPv6 reference implementation for BSDs
WIDE IPv6 backbone

- WIDE operates nationwide IPv6 backbone since 1996/06/09
 - We started with native, not tunnel!

- WIDE operates Gbps-class IPv6 backbone, will start operating 10Gbps nationwide backbone

- Days with tunnel/experiment/testbed is already over, IPv6 is for daily use for many people in WIDE and outside of WIDE

- Dr Hiroshi Esaki’s presentation (yesterday) covered more details
KAME Project goals

- Implement IPv6, IPsec, and whatever interests us onto *BSD
- Redistribute under BSD license
 - Research reference, education, and deployment
- Consortium of universities and companies
 - Keio-U, U-Tokyo, Fujitsu, Hitachi, IIJ, NEC, Toshiba, Yokogawa
- 10 core implementers, and number of supporting casts
- April 1998 - March 2004 (extension?)

- Supported platforms
 - OpenBSD, NetBSD, FreeBSD, BSD/OS

- Many commercial router/OS vendors are using our code
 - Juniper, Extreme Networks, IIJ, Fujitsu, Hitachi, ...
 - Apple MacOS X, BSD/OS, VxWorks...

- Active feedback to IETF specifications
KAME IPv6 code

- Rock stable, has been available since 1997
 - IPv6 operational experience in WIDE research community
 - (torture-test)
- High coverage of specs
 - more than IPv6/IPsec 40 RFCs
- Ultra spec-conformant
 - Conformance tested by TAHI verification team
- Ready for daily use (we actually are using it every day)
 - Everything is IPv6 ready
- Highly integrated
 - *BSD integration - IPv6 ready from boot floppy!
- Heavily documented and publically available source code
 - Good for learning, testing, and deployment
other advanced/experimental items

- ALTQ: alternate queueing framework
 - for diffserv/traffic management
- mobile-ip6
- multicast DNS lookup
- icmp6 name lookup
- IPv6 DNS lookups - EDNS0 considerations
- application supports
 - Mozilla, apache, ssh, perl, python, everything you want
- IPv6 PPP, NFS and NIS (NetBSD integration)
- DHCPv6 prefix delegation
KAME experiences and enhancements

- Extension for scoped address format
- Denial-of-service by extension header chain
- (In)security of some of IPv6 specs
- There were many more issues we have faced
 - Refer to other papers/internet-drafts from us
- We provided feedbacks to IETF specifications already
 - As updates to existing i-d/rfc, or independent i-d/rfc
IPv6 introduced "scoped address"
- unicast: Link-local, site-local
- multicast: 15 scopes

Scoped address must come with scope identifier
- They are ambiguous if we only have 128bit specified
- We need a common notation!

```
fe80::1234:5432:abcd:ef00%ether0
```

getaddrinfo/getnameinfo can support it cleanly
- getaddrinfo fills in sin6_addr + sin6_scope_id
- getnameinfo converts sin6_addr + sin6_scope_id into string

```
fe80::1 --- my machine --- fe80::1
```
Denial-of-service by extension header chain

- IPv6 employs the idea of "extension header chain"
 - Many extension headers can be attached to a packet

- There’s no upper limit to the number of extension headers!
 - Specwise, there’s no limitation at all

- KAME strategy:
 - Design function call tree so that there’s no kernel stack overflow
 - Limit number of extension headers acceptable (tunable)
(In)security of some of IPv6 specs

- Some of IPv6 specs talks conflicting thing
 - So many tunnelling specifications, with different definitions - inbound processing gets hairy
 - Use of special addresses (IPv4 mapped) - impose more work to third-party userland programs, insecure behavior by default
 - Issues with translators - tend to be configured as an open relay, help bad guys mistakenly

- Solution: careful implementation, feedback to specs
 - Diagnose each specs and implement those make sense only
 - Put enough warnings to users
 - Careful restrictions/tweaks into API, feedback to specs

- KAME case:
 - 6to4 is not enabled by default
 - IPv4 mapped address (inbound) is not enabled by default, or not supported at all
 - IPv4 mapped address (outbound) is supported only in some cases
 - Filter out some of misconfigured DNS database entries
Towards the real deployment

- Host OS, Router OS are all ready by now
 - *BSD, Solaris, Linux, whatever
 - Cisco, Juniper, Extreme, NEC, Fujitsu whatever
- It is just a matter of configuration to enable it

- Education is the key
 - Educate ISP operators
 - Educate university operators
 - Educate end users (may not be necessary, as IPv6 is hidden in the very bottom)

- Applications readiness
 - Upgrade application
 - Upgrade library (if library API is address-family neutral)

- Convince your boss, configure it and use it!
Deployment of WIDE IPv6 network

- 1996 - started with 64k leased lines
 - We are trying to avoid tunnels from day one
- 1997 - steal bandwidth from IPv4 backbone (ATM pipes)
- 1998 - JB: nationwide ATM research network, funded by government
 - With IPv6 we can get circuits cheap :-P
- 2000 - 200 to 300Mbps class IPv6 native backbone, nationwide
- 2002 - Gbps-class native backbone, nationwide

- Researchers have trouble with tight IPv4 address allocation policies
- IPv6 is the solution for them!
 - 30Mbps digital video multicast traffic, for remote classrooms (Wisconsin - Yokohama)
 - MP3 audio over multicast + IPsec
 - xcast (small group multicast)
 - IPv4/v6 over satellite medium
 - diffserv experiments/operations
 - Of course, routing experiments/operations - OSPFv3
Summary

- What is IPv6, and why IPv6 (brief summary)
- What is KAME project
- Some technical insights observed at KAME
- Implementation status
- What are the TODOs, issues from both specification/implementation
 - IPv6 is ready for everyone in every domain, so just configure it and use it!
- http://www.kame.net/