A Mobility Protocol Framework to Support Multiple Namespaces

Masahiro Ishiyama Corporate R&D Center, Toshiba Corporation Mitsunobu Kunishi Keio University Michimune Kohno Sony Computer Science Laboratories, Inc Fumio Teraoka Keio University

- Mobile access devices are increasingly popular
 - laptops, PDAs
- Demands for mobile protocols are emerging
 - Mobile IPv6
 - LIN6

- Mobility protocols need an identifier defined in the protocol
 - Mobile IP: Home Address, LIN6: LIN6 ID
- Cannot ignore the demand for defining an identifier of a node independent of the protocol
 - e.g. Auto-ID center
- Complexity in maintaining integrity of such identifiers
 - Namespaces are expected to become more diversified
- Hard to provide anonymity
 - Must disclosure its identifier, e.g. Home Address

- L3 Transparent Mobility
 - based on LINA
- Supports Multiple namespaces
 - L3 identifiers NOT needed
- Coexists with current IPv6 infrastructure
- No modification is needed for IPv6 applications
- Anonymity

Concept (1/2)

- A node specifies a target node by "name"
- Binding a name with a dynamically determined ID (NID)
 - conforms to the format of the IPv6 address
- The association of NID with the current interface address (Maddr) is maintained in each node
 - used for packet delivery

Communication model: Overview

- Immediate path: identification layer is bypassed
 - no address conversion

Mapping Agent: Resolving interface address from node name

- Mapping: association of the node name with current interface address
- Mapping Agent:
 - Maintains mappings
 - Replies with a mapping when requested
- A node registers a new mapping with its MA
- Each namespace needs a mechanism to discover a MA
 - This mechanism is dependent on each namespace
 - Out of the scope of this paper

Negotiated endpoint ID (NID) (1/2)

- NID: a dynamically determined "temporary" IPv6 address
 - Each name in any namespace is mapped to NID
 - Used in upper layers
 - Not interface address

Negotiated endpoint ID (NID) (2/2)

- NEN: determines the endpoint of a communication
 - Unique in the communicating nodes
 - Determined by negotiation
- Dedicated Prefix: predefined well-known fixed value
 - Does not determine any physical point of the network

- Maddr: enables mutual conversion between NID and Locator
 - Conforms to the IPv6 address format

- LUN: Randomly chosen value by the node
 - Embedded in the interface address
 - Immediate bit: goes to immediate path
 - no address conversion
- Mapping Entry:
 - Table for mutual conversion

(Namespace-ID, Name, NEN, ILUN, tLUN, the saddrow of the second s

SAINT 2003, Jan 28, 2003 - p.12/20

- Determining LUN
 - Each node determines at least one LUN on bootstrap
- Assigns Maddr to its interface
- Resolving Target Maddr
 - queries for the mapping to one of Na's MAs.

- Determination of NEN: NEN negotiation
 - Notify each other of (Namespace-ID, name, LUN)
 - Negotiate unique NEN in the two nodes
 - Generate mapping entry:
 - (NSb, Nb, nab, ia, ib, Pcb::ib)

- Obtains NEN from specified NID
- Search for mapping entry, get target Maddr

- Obtains (local LUN, target LUN) pair from addresses in the packet
- Search for Mapping entry, get NEN

- Assigns a new Maddr to the interface
- Notifies its MA of the new mapping
- May send the new mapping to correspondent nodes
 - Or wait untill the correspondent node refreshes the mapping

- Supports the two types of anonymity:
- Eavesdropping
 - Addresses used in packets are based on LUN
 - Generated autonomously and are random numbers
 - Difficult to derive names of nodes from addresses of packets
 - Difficult to determine the name of a node by eavesdropping on communication packets

Anonymity (2/2)

Hiding Caller-ID

- "Name" is needed to find designated MAs and to query for a mapping
 - Initiator can declare a temporary name
 random number, hash...
 - Declare address list of its designated MA on NEN negotiation
- No need to disclose its real name to the correspondent node

- Proposed a new mobility protocol framework
 - Supports Multiple Namespaces
 - Allows to specify a correspondent node by a name
 - Defined in any namespace
 - Adapted to a new namespace with ease
 - Can support two types of anonymity
- Future work
 - Prototype implementation of this framework
 - Evaluation on real IPv6 networks