
SAINT 2003 IPv6 Workshop - January 28, 2003

MLDv2 Protocol Design,
Implementation and Evaluation
for Source-Specific Multicast

over IPv6

Hitoshi Asaeda, INRIA
Shinsuke Suzuki, Hitachi Ltd.

 Today’s Presentation

 Source-Specific Multicast (SSM)
 Multicast Listener Discovery version 2 (MLDv2) specification
 Host-side kernel implementaion of MLDv2
 MSF implementation and its evaluation

 Multicast Communication Deployment

 PIM-SM/MSDP/MBGP
 Current Inter-domain multicast routing protocols for IPv4
 Any-Source Multicast (ASM) support (aka (*,G) join/leave)

 Scalability
 3rd-party dependency problem
 Traffic concentration problem
 Flood MSDP Source Active (SA) message

 Complexity
 Manage both RPT and SPT
 Need MSDP peer RPF check

 Motivation

 If we can construct/maintain only SPT, multicast routing tree
becomes pretty simple!

 Source-Specific Multicast (SSM)

 If we consider inter-domain multicast service, ...
 One-to-many or few-to-many communication model is feasible
 Each source address can be recognized beforehand

 If each source address is known by each multicast listener, ...
 SPT can be constructed directly

 → No need to create and maintain RPT

 → RP and MSDP are not required by routing protocols

 → ASM’s complexity and scalability problems are eliminated

 Source-Specific Multicast (SSM) is the solution

 SSM Deployment

 Host-side implementation
 Purpose
 Specification of interesting source address(es) as well as multicast address (aka (S,G)

join/leave)

 Summarizing and reporting (S,G) information
 Kernel implementation
 IGMPv3 for IPv4 and MLDv2 for IPv6
 MSF APIs
 Application implementation
 MSF APIs

 Router-side implementation
 Purpose
 Translation of reported (S,G) information
 Constructing SPT from initial phase
 Routing protocol implementation
 IGMPv3 for IPv4 and MLDv2 for IPv6
 (Currently, PIM-SSM is only the routing protocol to support SSM architecture)

 MLDv2 Specification

 MLDv2 for IPv6
 draft-vida-mld-v2-06.txt

 Main functions of MLDv2
 Source address filtering
 New API -
 IPMulticastListen(socket, interface, multicast-address, filter-mode, source-list)
 New type of Query and Report message
 Robustness variable
 Version compatibility mode
 New destination address of Report message
 No Report message surpression mechanism
 etc.

 Source Address Filtering

 Filter-mode is either "INCLUDE" or "EXCLUDE"
 INCLUDE indicates that reception of packets sent to the multicast address is

requested only from the specified source addresses.

 EXCLUDE indicates that reception of packets sent to the multicast address is
requested from all source addresses except the specified source addresses.

 Socket state
 (i, m, filter-mode, source-list)

 Interface state
 (m, filter-mode, source-list)
 Initial interface state is (null, INCLUDE, null)

 Interface State Transition

 Interface state is calculated as below
 If all sockets request a filter-mode of INCLUDE, then interface state is INCLUDE

with the union source lists.

 If any sockets request a filter-mode of EXCLUDE, then interface state is
EXCLUDE with the intersection of all EXCLUDE source lists subtracting the
union of all INCLUDE source lists.

 Action on change of interface state
 Old State New State State-Change Record Sent
 ----------------- ----------------- ---------------------------------
 INCLUDE(A) INCLUDE(B) ALLOW(B-A), BLOCK(A-B)
 EXCLUDE(A) EXCLUDE(B) ALLOW(A-B), BLOCK(B-A)
 INCLUDE(A) EXCLUDE(B) TO_EX(B)
 EXCLUDE(A) INCLUDE(B) TO_IN(B)

 Multicast Source Filter (MSF) APIs

 Socket Interface Extensions for Multicast Source Filters
 draft-ietf-magma-msf-api-03.txt

 Used to change a socket state
 Basic API
 Used with setsockopt()
 Used to join/leave a single channel

 Advanced API
 Used with ioctl()
 Used to join/leave a single or multiple channel(s), e.g., ((S1,S2,S3),G1)
 Used to change a filter-mode of socket state without leaving joined channel

 Basic API Usage

 A part of a sample application code

 bcopy(&grp, &gsr.gsr_group, grp.sin6_len);
 bcopy(&src, &gsr.gsr_source, src.sin6_len);

 if (setsockopt(socket, IPPROTO_IPV6, MCAST_JOIN_SOURCE_GROUP,
 (char *)&gsr, sizeof(gsr)) < 0)
 perror("cannot listen group");

 Advanced API Usage

 A part of a sample application code

 if ((gf = malloc(GROUP_FILTER_SIZE(numsrc))) == NULL)
 perror("memory allocation error");

 bzero(gf, GROUP_FILTER_SIZE(numsrc));
 gf->gf_interface = index;
 gf->gf_fmode = mode;
 gf->gf_numsrc = numsrc;
 bcopy(&grp, &gf->gf_group, grp.sin6_len);
 for (i = 0; i < numsrc; i++)
 bcopy(&src[i], &gf->gf_slist[i], src[i].sin6_len);

 if (ioctl(socket, SIOCSMSFILTER, gf) != 0)
 perror("cannot listen group");

 MSF Kernel Implementation

 Socket state migration and interface state transition
 State-Change report transmission

start report transmission timer

address record

create/merge and send
MLDv2 report message

Application

setsockopt() ioctl()

create/merge socket state

calculate current interface state

create/merge source list

create/merge multicast

 Source Address Comparison

 Linear search algorithm
 Advantage
 Easy to understand the logic
 Easy to maintain the code
 Disadvantage
 May cause low performance if the number of source addresses is highly increased

 → It is quite rare that so many multicast applications use a same multicast address for each
 different channel.
 e.g., (S1,G1), (S2,G1), (S3,G1), ... (S1000,G1), ...

 Implementation Evaluations

 Evaluation on NetBSD-current (1.6I)
 1GHz Pentium III PC with 512MB memory

 Conditions are ...
 The number of sampling data is 100 for each request
 Multicast address - fixed
 Source address - randomly created

 Average Response Time of Basic API

 E.g., Request to change INCLUDE with null source address to
INCLUDE with one source address

 Response time is proportional to the number of source addresses
of the list

Request Average (micro sec.)
IN(0) -> EX(0) 965
IN(0) -> IN(1) 1381
IN(1) -> IN(2) 1247
IN(2) -> IN(3) 1291

 Average Response Time of Advanced API

 Advanced API requires complex implementation
 Need source address validation/duplication check before merging source

address list etc.

 First entry shows an initial INCLUDE join request in which five source
addresses were specified.

 Second entry and third entry are for the same request, but third one uses Basic
API

Request Average (micro sec.)
IN(0) -> IN(5) 2256
IN(5) -> EX(1) 1637
IN(5) -> EX(1)(*) 1512

 Available MLDv2 Implementations

 Kernel
 NetBSD-current
 http://www-sop.inria.fr/planate/Hitoshi.Asaeda/mldv2
 IGMPv3 implementation is prerequisite
 (Enabling IGMPv3 is NOT required.)
 FreeBSD-4.7, NetBSD-1.6, OpenBSD-3.2
 http://www.kame.net

 Router
 pim6sd
 ftp://ftp.kame.net/pub/kame/misc
 Hitachi GR2000
 http://www.internetworking.hitachi.com
 6Wind
 http://www.6wind.com

 Applications and utilities
 mcastread
 http://www.kame.net

Thank you.

