The Theory of Twiners and Linear
Parametricity (Note)

Ryu Hasegawa

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba 3-8-1,
Meguro-ku, Tokyo 153-8914, Japan

1 Introduction

We want to show that solutions of domain equations, or equivalently existence
of recursive types, can be derived from a computer theoretic concept, called the
principle of linear parametricity. Existence of recursive types has applications
in, for example, semantics of functional programming, type-theoretic study of
object-oriented programming, and the theory of programme transformation, as
reviewed in the following. In usual, the existence of recursive types is ensured
using a mathematical theory of Scott domains or alike. Our innovation lies in
that it can be derived from a more computer theoretic concept. In this work,
we focus on giving a model satisfying the principle of linear parametricity in a
reasonable sense, leaving more syntax-oriented matters such as axiomatization
to a future work.

In many activities of computing, we often need the structures defined recur-
sively. Simple data structures such as lists, trees, and even natural numbers are
examples of recursively defined data. These examples are rather easily ratio-
nalized, since they are given as fixed points of operators where indeterminates
occur only positively. A naive set-theoretic understanding is sufficient for them
in most occasions.

A more challenging problem is whether we can give rationale for fixed points of
operators that may contain negative occurrences as well. One of early specula-
tions leading to this problem was to provide semantics for the untyped lambda
calculus. The calculus has a rather peculiar structure where functions and
data have no distinction and everything can be applied to everything. This
observation leads us to the fact that giving semantics of the untyped lambda
calculus amounts to detecting an entity X that is isomorphic to the function
space X = X on itself. Namely we need a fixed point of the operator F(X)
defined by X = X where the indeterminate X occurs both positively and nega-
tively. If we work in set theory and interpret X = X as the set of all functions,
simple cardinality argument reveals that there are only trivial solutions where
the fixed point X is a singleton. Hence we must give away naive set-theoretic
interpretation, and try to find certain exotic structures in which we can have
fixed points of the operators of the type above. It was late sixties that Scott

The Theory of Twiners and Linear Parametricity (Note) 2

finally gave a construction by which we can form fixed-points of such opera-
tors [18]. His construction uses certain (not even Hausdorff) topological spaces
and continuous functions. Later the idea leaded to evoluation of domain theory
[7], which nowadays is matured so as to be used as fundamental tools to give
mathematical reasoning to programming languages.

Turning to more up-to-date topics, we still hold the same sort of problems in
several situations. One of them comes from a type-theoretic study of object-
oriented programming. During the attempt to pin down the essence of the
object-oriented programming in functional programming setting, several new
ideas are discovered and imported into the traditional theory. These include
how to incorporate the concepts of inheritance and self-reference. At an early
stage, unfortunately, in the author’s opinion, inheritance was emphasized too
much. It was a vogue to adjoin the structure of partial orders to systems in
order to interpret inheritance. However the author believes the concept of self-
reference is equally or more important as the heart of object-oriented program-
ming and should be dealt with in suitable respects (to be fair, we remark that
many systems pay attention to also self-reference properly). A philosophy of
object-orientedness is that each definition of object should be self-contained
(putting inheritance aside) so that the behaviour of an object is determined by
information written in the definition of the object itself. As a natural conse-
quence, there should be a mechanism with which certain methods, often called
binary methods, can refer the object itself. For example, the definition of the
objects of queues should contain the method to update queues, this method
accessing the object itself and modifying it. To comprehend this phenomenon
type-theoretically, we usually employ recursive types where indeterminates may
occur negatively [1, 15, 17]. Of course, the consistency of recursive types is
a sensitive matter. A conceivable way to check it is to build mathematical
semantics, employing domain theory.

Another example is taken from the theory of programme transformation. The
fusion rule is a machinery to eliminate intermediate structures passed between
two functional procedures, when they are composed. The rule asserts that,
if two canonical functions from inductive types satisfy certain commutativity
conditions, we can combine them into a single function so that intermediate
return values are never created. Under lazy evaluation of functional program-
ming, we can use also coinductive types as potentially infinite data types. The
corresponding fusion rules can be defined for coinductive types as well. What
is more interesting, however, occurs when inductive and coinductive types in-
teract. Hylomorphism is by definition the composition of a canonical function
into coinductive types vX. F(X) followed by a canonical function from inductive
types uX. F(X), provided that these coinductive and inductive types coincide,
that is vX. F(X) = pX.F(X) [4, 11]. An advantage of hylomorphism is that
intermediate structures can be always eliminated. But, to use this notion, we
must assume that inductive types coincide coinductive types. At first sight,

The Theory of Twiners and Linear Parametricity (Note) 3

this assumption looks rather unnatural. For example, intuitively, the inductive
type for the operator 1 + 4 x X is that of finite lists of members of A while
the coinductive type is that of possibly infinite sequences. We can show that
the assumption of coincidence is equivalent to existence of recursive types under
certain conditions. To ensure the notion of hylomorphism to be consistent, we
must appeal to domain theory again.

Therefore many subjects rely on exquisite theory of Scott domains; from old
problem of giving semantics to the untyped lambda calculus, to newer fields of
theoretical computer science, e.g., object-oriented programming and the theory
of programme transformation. There is no doubt that domain theory was one of
the most successful theories to give rigid foundations to the theory of program-
ming. At this point, however, we want to address a fundamental query. Can the
theory of programming be built only on Scott domains? Trained theoreticians
may fully use domain theory as a vehicle for verification, whereas the working
programmers (even the theoreticians themselves when they write actual codes)
would not take Scott domains into account to understand how the programmes
they write work. A role of semantics is to give an intuition of the behaviour of
programmes. In this respect, domain theory is too apart from computational
concepts programmers naturally bear in mind.

Our goal is to propose a computer theoretic concept from which we can derive
the construction usually achieved by domain theory. Namely we want to have
the same effect as domain thoery without appealing to Scott domains. The new
concept is called linear parametricity. An advantage of our method is that we
can obtain various results from a single principle, and that the principle of linear
parametricity can be understood from a computer theoretic point of view.

Earlier we investigated the notion of (full) parametricity for polymorphic pro-
gramming languages. The intuition behind parametricity can be easily under-
stood computationally. That is, a polymorphic programme is called parametric
if it makes no explicit use of information of types. Then the principle of para-
metricity assures that, if a polymorphic programme is parametric, it behaves in a
uniform way, irrelevant of the types with which we substitute type-parameters.
In earlier works, we studied the principle of parametricity from several per-
spectives, including categorical and logical ones, and demonstrated that this
simple principle induce many nice properties [8, 9, 10]. However the principle
of parametricity can coexist solely with a fragment of polymorphic languages
where only terminating programmes matter. The property of languages allow-
ing recursive programming contradicts to the categorical consequences of the
principle.

Linear parametricity is a reduced version of full parametricity, and does not
contradict to existence of recursive programmes. Furthermore, in accordance
with recursive programmes, linear parametricity yields better results: solutions
of domain equations, i.e, recursive types, which cannot be consequences of full

The Theory of Twiners and Linear Parametricity (Note) 4

parametricity. Linearity means the same thing as that in linear logic [5]. Namely
linear parametricity is the principle of parametricity asserted in the context of
linear logic. A similar approach is proposed in [16].

In this work, we develop a model of second order linear logic, using new mathe-
matical stuffs called twiners, which may be interesting in their own right. They
are extensions of Joyal’s analytic functors [12, 13] and Girard’s normal functors
[6]. Into the twiner model of second order linear logic, we incorporate the no-
tion of linear parametricity, and form a second more elaborate model satisfying
the principle of linear parametricity. Finally we verify that, in the new model,
we can solve domain equations using syntax of linear logic, rather than Scott
D ,-style construction. It would take dozens of pages to fully expand the theory
of twiners. So, in this paper, we must be content with overview of the theories,
leaving details to the full paper in prepration.

2 First Model

We assume certain amount of knowledge in 2-category and bicategory theory.
We refer the reader to standard literatures [14, 3]. To fix terminology, we
use the following terms: pseudo-functors, quasi-natural transformations, and
modifications.

A groupoid is a small category where every morphism has an inverse. In par-
ticular, if a groupoid has a single object only, the set of all morphisms forms
a group. Conversely every group may be regarded as a groupoid with a single
object. We note that, since every morphism of a groupoid 4 is invertible, the
opposite category A°P is equivalent to A as groupoids. To distinguish objects
etc. in A°P from those in A, we often use notation Z for the thing in A°P cor-
responding to z in A. We sometimes write the overline as in A to denote the
opposite groupoid itself.

A groupoid-enriched category is such that its homsets are endowed with the
structure of groupoids satisfying certain conditions we do not specify here.
It comes from standard enriched category theory by taking the category of
all groupoids and all groupoid homomorphisms with cartesian product as a
monoidal structure. We note that a groupoid-enriched category is nothing else
than a 2-category where every 2-cells are invertible.

Example: (i) Gpoid is the groupoid-enriched category of all groupoids, all
groupoid homomorphisms, and all natural transformations which turns out au-
tomotically to be isomorphisms.

(ii) For each groupoid A, the groupoid-enriched category Gpoid* is given by
all pseudo-functors on A into Gpoid, all quasi-natural transformations, and all

The Theory of Twiners and Linear Parametricity (Note) 5

modifications. By an analogy that an object of Set® for a group G is the same
thing as a G-set, we call an object of GpoidA an A-groupoid.

(iii) We can define the slice groupoid-enriched category Gpoid/A, the objects
of which are groupoid homomorphisms T £ A on some groupoid T'. We omit
the details here.

2.1 Proposition
Let A be a groupoid.

Biequivalence Gpoid? =~ Gpoid/A between groupoid-enriched categories holds.

The right-to-left direction of the biequivalence is given by the Grothendieck
construction [2]. For each object ¢ in Gpoid“, we denote the groupoid over A
obtained as the Grothendieck construction by either Gr(t) or, bollowing integral

notation, fm cA t[z]. In particular, an A°P x B-groupoid M corresponds to a span

S
YN\
A B,

taking A = A°P into considertation. We call A°P x B-groupoids M biprofunctors
from A into B as a generalization of profunctors, and write M : A —e+ B. We
might regard such a biprofunctor M as a matrix of A columns and B rows. If
N is a biprofunctor from B into C, we define the matrix composition NM :
A - C by (NM)[z,2] := fyGB N[g,z]M[Z,y]. In terms of spans, the matrix
composition corresponds to taking a bipullback Sys X Sn.

We can give the interpretation of the additive-multiplicative fragment of linear
logic at this point. Each type is interpreted as a groupoid A. A term of type
A is interpreted as an A-groupoid, that is, an object of GpoidA. We give
the interpretations of types only, leaving those of terms to the full paper. If
we identify types A with their interpretations, the interpretations are given as
follows:

[A1] = 4
[A® B] = [A® B]
[A& B] = [A® B]
[1] = [L1] =1
[T] = [0] = 0.

Ax B
A+ B

In particular, the interpretation of linear implication is given as [A — B] =
A°P x B. Namely a term of type A — B is interpreted as a biprofunctor from
A into B.

To define the intepretation of exponential in linear logic, we introduce wreath

The Theory of Twiners and Linear Parametricity (Note) 6

product of groupoids. Let G be a groupoid endowed with a pseudo-functor
G % Gpoid. The wreath product A wr G is defined by the Grothendieck
construction [, . Gpoid(p(z), A). We remark that this concept is a general-
ization of the traditional wreath product of groups, occurring as a special case
of semidirect product [19]. To be more general, if C is a groupoid-enriched
category, we can define wreath product A wr G for each object A € C and a
pseudo-functor G %+ C from a groupoid G, simply by putting the groupoid
AwrG tobe [,_,C(p(z),A). For the interpretation of linear logic, we must
slightly extend groupoid G in definition of wreath product. We allow G to have
a family C of empty components. Namely we formally consider G to be a pair
of a groupoid G' and a set C. The contribution of one empty component to
wreath product is a singleton as a sum over an empty set. Hence, for such a
pair G, we define A wr G to be a direct sum of A wr G' and a disjoint groupoid
(i-e., a set) C.

2.2 Definition (of S)

An extended groupoid S is a direct sum of symmetric groups S,, where n ranges
over the set N of natural numbers. For n = 0, we regard Sy to be an empty
component in the sense above.

The interpretation of exponential is given as wreath product [!A] = A wr S.
Accordingly [?A] = A wr S°P, which is equivalent to A wr S.

Next we turn to second order variable types. We want to consider types such
as !X where X is a type variable. To interpret !X, we are interested in the
operation X +— (X wr S). It turns out that (-) wr S is a 2-functor from Gpoid
to itself. In general, (-) wr G for G £+ C is a 2-functor on C into Gpoid

In a groupoid-enriched category C, we call a 1-cell A 4 B essentially onto if
the groupoid homomorphism C(B,X) — C(4,X) induced by composition is
faithful for every object X. Likewise we call f surjective if C(B,X) — C(4,X)
is full and faithful for every X. An object A is biprojective iff the 2-functor
C(A4,-) carries surjections to surjections. We call 4 quasi-biprojective iff C(A4,-)
carries surjections to essentially onto groupoid homomorphisms. Moreover we
call A finitely bipresentable iff C(4,-) preserves filtered bicolimits.

2.3 Theorem
Let C be a groupoid-enriched category having all bilimits and all filtered bicol-
imits, and let C £+ Gpoid be a pseudo-functor.

The following are equivalent.

(i) The pseudo-functor F is quasi-naturally equivalent to the 2-functor (-)wrG
associated to a pseudo-functor G -2+ C subject to the condition that o(z)
is finitely bipresentable for every object x € G.

The Theory of Twiners and Linear Parametricity (Note) 7

(ii) The pseudo-functor F preserves filtered bicolimits and bipullbacks.

(iii) For each object (A,z) of the Grothendieck construction Gr(F), the slice
groupoid-enriched category Gr(F)/(A,z) has a biinitial object (Z,c) (k09
(A, z) where Z is finitely bipresentable.

2.4 Definition

Let C be a groupoid-enriched category having all bilimits and all filtered bicol-
imits.

A twiner on C is a pseudo-functor C £ Gpoid satisfying one of the equivalent
conditions in the preceding theorem. A twiner is called discrete iff it carries sur-
jections to surjections. A twiner is called quasi-discrete iff it carries surjections
to essentially onto groupoid homomorphisms.

A twiner (-) wr G for G %5 C is discrete iff all p(z) are biprojective. It is
quasi-discrete iff all p(z) are quasi-biprojective.

Now we give the interpretation of types and terms having type variables in
linear logic. A type F(X1,Xas,...,X,) with n type variables is interpreted as
a discrete twiner on Gpoid™. Moreover a term of type F (X1, Xs,...,X,) is
interpreted as a quasi-discrete twiner on the Grothendieck construction Gr(F).
To Gr(F) -+ Gpoid and a groupoid 4, we can associate a F A-groupoid ¢4 by
definition t4[z] := ¢(4, z).

For a later use, we note that a twiner extends to operations on biprofunctors.
If F is a twiner on Gpoid and M : A —o» B is a biprofunctor, we can associate
FyiproM : FA —> FB. In fact, M corresponds to a span Sp; over A and B.
So we simply define Fp;pn, M to correspond to F(Syr) over FA and FB. In the
sequel, we write simply F'M instead of cumbersome F;pn, M.

Finally we must give the interpretation of second order quantified types. In-
deed we give two interpretations. The first one stated here is based on the
observations summarized so far. Later we provide with more elaborate con-
struction so that the model enjoys the principle of linear parametricity. Let
By (Gpoid) be the 2-groupoid of all quasi-biprojective, finitely bipresentable
groupoids, all equivalences between such groupoids, and all natural isomor-
phisms. We note that every quasi-biprojective groupoid is equivalent to a direct
sum of free groups. The 2-groupoid B (Gpoid) is actually biequivalent to a
groupoid, as a consequence of the fact that all free groups have trivial centers.
For each discrete twiner F' on Gpoid, we define groupoid wF by

P = fXEqu(Gpoid) F(X).

Then the interpretation of second order quantified types is given as [V X. F(X)]
= wF. Now we have obtained the first model of second order linear logic.

The Theory of Twiners and Linear Parametricity (Note) 8

2.5 Theorem
The interpretation above gives a sound model of second order linear logic.

3 Linear Parametricity and Recursive Types

We truncate the first model to the one satisfying linear parametricity. First we
introduce a linear dependent type theory with realizability semantics informally.
Types are identified with groupoids and terms of type A are objects of groupoid-
enriched category GpoidA. The only logical connective we are concerned with
is the linear first order universal quantification (Vz:A)p(z). As an atomic
formula, we take equality predicate t =4 u for each type A. We interpret each
formula as a groupoid. For equality, the formula ¢ =4 w is interpreted as the
groupoid

(lt) := [oc o u[z]t[2]

where the concatenation is an abbreviation of direct product of two groupoids.
We note that there is an embedding A°® — Gpoid* carrying Z to the A-
groupoid denoted by {Z} which carries a € A to the discrete groupoid A(z,a).
For interpretation of linear quantifier, if p(z) is interpreted as F : Gpoid? —
Gpoid, then the formula (V z: A)p(z) is interpreted by the Grothendieck con-
struction [ca F{z}. In particular, equality ¢ =, u for type L (that is, a
singleton 1) is interpreted by u°® x t. Then ¢ =4 u may be regarded as an
acronym of (Vz: A+)(tz =, uz).

So far linearity does not come on the scene yet. It involves the witness relation
s F ¢ we introduce below, read as s witnesses p. Here s is an A-groupoid if the
formula ¢ is interpreted by groupoid A. For equality predicate, s F (¢t =,) iff
s is an identity biprofunctor from w into ¢. For the linear quantifier, the witness
relation s = (V2 : A)p(z) holds for an ([, , F{Z})-groupoid s iff su F Fu holds
for every u € Gpoid”. Here an Fu-groupoid su is defined as

sulyl = /LGA,ceF{i}S[m,C] »/kEu[z} Fu(Fk(e).y)

for y in the groupoid Fu. We note u[z] equals Gpoid*({z},u). So Fk is
a groupoid homomorphism from F{z} into Fu. We emphasize that linearlity
involves witnesses only. There may be several occurrences of z in the linearly
quantified formula (V z : A)¢(z), including the case of null occurrence. The null
case, say (Vz: A)B, is written linear implication A — B.

A (binary) linear predicate between types A and B is a predicate P(z,y) for
z:A and y: B, endowed with its interpretation as a biprofunctor M : A -+ B
and witness relation s F P(t,u) for each pair of ¢t and t'. Here s is a (u|M]|t)-
groupoid, where (u|M|t) is defined to be [f,_, . puly]M[Z, y]t[z].

The Theory of Twiners and Linear Parametricity (Note) 9

Example: (i) £ =4 y is a linear predicate between A and A. It is interpreted
as an identity biprofunctor, and witness relation has been defined above.

(ii) If R and S are linear predicates interpreted by biprofunctors M : A —e+ A’
and N : B —e> B', then R® S is a binary predicate between AQ B and A'® B'.
Its interpretation is M ® N defined as (M ® N)[Z,§,z',y'] := M|[Z,2'|N[y,y']
Witness relation is defined to hold for r®s F R(t,t')®S(u,u') iff both r F R(t,t)
and s F S(u,u') hold.

(iii) If R is a linear predicate between A and A', the dual R+ between A°P and
A'°P is defined. We regard

Ri(t,t") = (Vz:A)(Vz':4") (R(z,z') —o (tz =, t'z")),

from which its interpretation and witness relation are induced.

3.1 Definition
A factual predicate is a linear predicate R satisfying that s F R(t,t') iff s E
R+L(t,t).

As a basic observation, the double dual R is a factual predicate for every
linear predicate R. Using this observation, we associate factual predicates F(R)
to each type F(X) with a type variable X and each factual predicate R. We
have given a linear predicate R ®¢ S in the examples above. Likewise we can
define linear predicates R & S and o R in a straightforward way. Definition of
Vo Y.F(R,Y) is more complicated, and we omit it here. These predicates with
suffix 0 are not factual. So we define as follows:

F(R) B G(R) = (F(R)' ® G(R)")"
F(R)®G(R) = (F(R)* 3G(R)")"
F(R)® ()=(()L&o()L)L
F(R)& G(R) = (F(R)" @ G(R)")"
?F(R) = (LF(R))

IF(R) = (?F(R)")*
AV.G(RY) = (Y.G(R,Y)")*
VY.G(R,Y) = (AY.G(R,Y)})!

If a linear predicate R is interpreted by M : A —e+ B, then F(R) is interpreted
by the biprofunctor F M.

We extend a twiner ¢ on Gr(F) to operations on biprofunctors, as a twiner F
on Gpoid extends to FyippoM = FM. For each biprofunctor M : A —e> B,
we want to define a (tg|FM|t4)-groupoid tas. In terms of spans, the groupoid

The Theory of Twiners and Linear Parametricity (Note) 10

(tB|FM|ta) corresponds to bipullback Ty x a4 FSy X pp Ts where by conven-
tion t4 € Gpoid? A corresponds to a groupoid T4 over FA and so on. Then
ty is defined to correspond Tg,, factoring through T4 Xpa FSyr Xrp TB.

3.2 Definition
Let t be a quasi-discrete twiner on Gr(F') where F is a discrete twiner on Gpoid.

t is linearly parametric iff witness relation tps F F(R)(ta,ts) holds for every
factual linear predicate R interpreted by M : A —» B.

We recall that a twiner is equivalent to a 2-functor given as wreath product. It
has the shape (-) wr G = [, . h¢(2) where h*(%) is the representable 2-functor
h¢?) (A,) = Gr(F)(¢(z),(4,z)). The following is our main lemma towards
the principle of linear parametricity.

3.3 Lemma
Let t be a quasi-discrete twiner on Gr(F), given as wreath product szG he(2),

Then t is linearly parametric iff a representable 2-functor h?\?) is linear para-
metric for every object z € G.

We define 7°F be the full subgroupoid of mF of all objects (Z,c) satisfying
that the representable 2-functor Gr(F)((Z,c),-) is linearly parametric. With
this lamme, a quasi-discrete twiner (-) wr G induced by G %+ Gr(F) is linearly
parametric iff the image of ¢ is contained in 7”F. Now we define the second
model of second order linear logic simply by changing the interpretation of quan-
tifier. We interpret V X. F(X) by 7P F. We can verify that the interpretation
of every term is actually linearly parametric, that is:

3.4 Theorem
The second interpretation given above provides a sound model of second order
linear logic.

An advantage of our linearly parametric model to earlier models satisfying full
parametricity is that we can have fixed-point operator, which is needed to in-
terpret recursive programmes.

3.5 Theorem
We have a linearly parametric fized-point combinator fix of type VX. (!X —o

The Theory of Twiners and Linear Parametricity (Note) 11

We can represent recursive types in the linearly parametric second model as
follows. Let F(X) be a type where X may occur both positively and negatively.
Separating positive occurrences X+ and negative occurrences X ~, we may write
F(X—,X™"). We define two types A and B as

A = 3AX,Y.(X o F(Y,X)®(F(X,Y) =Y)® X
B = VX,Y./(X - F(Y,X))®!(F(X,Y) <Y) - Y.

Then we can verify that B = F(A,B) and A = F(B,A). The proof simu-
lates that of representation of initial algebras and final coalgebras under full
parametricity. Moreover A = B holds in the linearly parametric model, as a
consequence of the existence of the fixed-point combinator fix. Thus the follow-
ing holds:

3.6 Theorem
Suppose that groupoids A and B are given as above.

Then A = F(A) holds in the linearly parametric model of twiners. Namely A
gives an encoding of recursive type rec X. F(X) in the framework of second order
linear logic augmented with a fized-point combinator.

References

[1] M. Abadi and L. Cardelli, A theory of primitive objects, Second-order systems,
Sci. Computer Programming 25 (1995) 81-116.

[2] M. Barr and C. Wells, Category Theory for Computing Science, Prentice-Hall
International Series in Computer Science, (Prentice-Hall, 1990).

[3] J. Bénabou, Introduction to bicategories, in: Reports of the Midwest Category
Seminar, (Springer, 1967) pp. 1-77.

[4] R. S. Bird, Functional algorithm design, Sci. Computer Programming 26 (1996)
15-31.

[6] J.-Y. Girard, Linear logic, Theoretical Computer Sci. 50 (1987) 1-101.

[6] J.-Y. Girard, Normal functors, power series and A-calculus, Ann. Pure Applied
Logic 37 (1988) 129-177.

[7] C. A. Gunter, Semantics of Programming Languages. Structures and Techniques,
Foundations of Computing Series, (MIT Press, 1992).

[8] R. Hasegawa, Categorical data types in parametric polymorphism, Mathematical
Structures in Computer Science 4 (1994) 71-109.

[9] R. Hasegawa, Relational limits in general polymorphism, Publications of Research
Institute for Mathematical Sciences 30 (1994) 535-576.

[10] R. Hasegawa, A logical aspect of parametric polymorphism, in: Computer Science
Logic, 9th International Workshop CSL’95, H. K. Biining, ed., Paderborn, Ger-
many, 1995, Lecture Notes in Computer Science 1092, (Springer, 1995) pp. 291—
307.

The Theory of Twiners and Linear Parametricity (Note) 12

[11] Z. Hu, H. Iwasaki, and M. Takeichi, Deriving structural hylomorphisms from
recursive definitions, in: ACM SIGPLAN International Conference on Functional
Programming, Philadelphia, USA, (ACM Press, 1996) pp. 73-82.

[12] A. Joyal, Une théorie combinatoire des séries formelles, Advances Math. 42 (1981)
1-82.

[13] A. Joyal, Foncteurs analytiques et espéces de structures, Combinatoire Enumé-
rative, Proceedings, Montreal, Québec, Canada, 1985, G. Labelle, P. Leroux, eds.,
Lecture Notes in Mathematics 1234, (Springer, 1986) pp. 126—-159.

[14] G. M. Kelly and R. Street, Review of the elements of 2-categories, in: Category
Seminar, Sydney, Australia, 1972/1973, Lecture Notes in Math. 420, (Springer,
1974) pp. 75-103.

[15] J. C. Mitchell, Foundations for Programming Languages, Foundations of Com-
puting Series, (MIT Press, 1996).

[16] G. Plotkin, Second order type theory and recursion, unpublished notes, 1993.

[17] D. Rémy and J. Vouillon, Objective ML: An effective object-oriented extension
to ML, Theory Practice Object Systems 4 (1998) 27-50.

[18] D. S. Scott, Continuous Lattices, in: Toposes, Algebraic Geometry and Logic,
Halifax, Canada, 1971, Lecture Notes in Mathematics 274, (Springer, 1972) pp. 97—
136.

[19] M. Suzuki, Group Theory, I, Grundlagen der mathematischen Wissenshaften 247,
(Springer, 1982).

