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Abstract. We consider a stochastic version of the longest
path problem in DAGs and propose an algorithm that ap-
proximates the distribution function of the longest path
length by utilizing (approximate) counting. In general, the
stochastic longest path problem has several difficulties to
solve; (1) we have no general method to calculate the
exact distribution function FMAX(x) of the longest path
length, and even if we could do that, (2) the distribution
function often takes a complicated form. For this prob-
lem, it is natural to consider calculating a simpler approx-
imation of FMAX(x) and give a certain approximation
guarantee. We show an algorithm that gives a bound on
FMAX(x) by approximating ln |P|, where P is the family
of paths. The output of our algorithm A(a) satisfies that
A(a) ≥ F−1

MAX
(a) for a ≥ 2−|P|, and the approxima-

tion factor is O((σ/µ)
p

C/h) for a ≥ 1/2, where µ and
σ2 are, respectively, the minimum mean and the maxi-
mum variance of the edge lengths, C is an upper bound on
ln |P| and h is the maximum number of edges in P ∈ P .
The running time of our algorithm is O(|E|), where |E|
is the number of edges in a DAG.

1 Introduction

1.1 Problem and Results

We consider a stochastic version of the longest path
problem in DAGs and propose an algorithm that ap-
proximates the distribution function of the longest path
length by utilizing approximate counting. Let G =
(V,E) be a directed graph and each edge e ∈ E is
associated with an edge length Xe. In the longest path
problem, we are to obtain maxP∈P {∑e∈P Xe} where
P ⊆ 2E is the family of paths in G. In a stochastic
version of the longest path problem, each edge length
is given as a random variable. Then the longest path
length of the problem is also a random variable. We
consider the problem to find the distribution function
of maxP∈P{

∑

e∈P Xe}. In this paper, we assume that
the edge lengths are mutually independent and nor-
mally distributed. Although we deal with the longest
path problem in this paper for simplicity, we can con-
struct a similar algorithm for the shortest path problem
by calculating the complementary distribution func-
tions instead of the distribution functions.

Let FMAX(x) be the distribution function of the
longest path length. Then a stochastic version of the

longest path problem is to calculate distribution func-
tion FMAX(x). In general, the stochastic longest path
problem has several difficulties to solve; (1) we have
no general method to calculate the exact distribution
function FMAX(x), and even if we could do that, (2)
the distribution function often takes a complicated form.
For these problems, it is natural to consider calculat-
ing a simpler approximation of FMAX(x) and give a
certain approximation guarantee. There are roughly
two standpoints of approximating a function by an-
other function: (1) fitting: find a function that mini-
mizes “errors” from the original function by adjusting
its parameters and (2) bounding: find upper and lower
bounds on the original function such that each of them
is as close to the other as possible. In this paper, we
take the latter standpoint to figure out the behaviour
of FMAX(x). A half of the problem, obtaining an up-
per bound on FMAX(x), can be easily solved, because
the distribution function FP (x) of

∑

e∈P Xe for any
P ∈ P is an upper bound on FMAX(x). However the
other half of the problem, obtaining a lower bound on
FMAX(x), is not trivial. Hence we concentrate on ob-
taining a lower bound on FMAX(x).

In this paper, we show an approximation algorithm
that gives a function by utilizing an upper bound C on
ln |P| and the function bounds FMAX(x) from below.
The output A(a) of our algorithm satisfies A(a) ≥
F−1

MAX(a) for a ≥ 2−|P |, and the approximation fac-
tor is O((σ/µ)

√

C/h) for a ≥ 1/2, where µ and σ2

are, respectively, the minimum mean and the maxi-
mum variance of the edge lengths, and h is the max-
imum number of edges in a path in G. The running
time of our algorithm is O(|E|).

1.2 Related Work

The stochastic longest path problem has been exten-
sively investigated, since there are many useful appli-
cations. The (deterministic) longest path problem on
DAGs are known as PERT [8] in the fields of schedul-
ing and Operations Research, and their stochastic ver-
sions are considered from 1960s [4, 7, 6]. The problem
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is also intensively studied from the viewpoint of cir-
cuit delay analysis [2, 3, 5, 9]. They approximate the
distribution function of the longest path length in heuris-
tic ways.They run practically fast, but have no guar-
antee about the approximation. Then authors of this
paper proposed an algorithm that approximates the
longest path length from below with approximation
guarantee [1].

2 Preliminaries

Let X be a random variable with mean µ and variance
σ2. A random variable X obeys a normal distribution
N(µ, σ2) if its distribution function is given as,

P (X ≤ x) =

∫ x

−∞

1

σ
√

2π
exp

(

−1

2

(

t − µ

σ

)

2
)

dt.

3 Approximation Algorithm

Let µe and σ2
e be, respectively, mean and variance of

Xe, the length of edge e ∈ E. Suppose that µmax =
maxP∈P {

∑

e∈P µe} and σ2
max = maxP∈P{

∑

e∈P σ2
e}

are known. Then consider the distribution function FB(x)
of N(µmax, σ2

max
). We can prove that (FB(x))|P| is a

lower bound on FMAX(x) for x ≥ µmax. In order to
minimize the running time of the algorithm, we pro-
pose to approximate the inverse function of (FB(x))|P|.
Let

L(x;µ, σ2) = exp

(

− exp

(

−1

2

(

x − µ

σ

)

2

+ ln ln 2

))

.

Then we can prove that L(x;µ, σ2) ≤ F (x) for x ≥ µ
where F (x) is the distribution function of N(µ, σ2).
Since equation L(x;µ, σ2) = a has two real solution
for 1/2 ≤ a < 1, we denote the larger solution by
L−1(a;µ, σ2). Then we have

L−1(a;µ, σ2) = µ + σ
√

−2 ln(− ln a) + 2 ln ln 2.

An upper bound on the inverse function of (FB(x))|P|

is given as

F−1

B (a1/|P|) ≤ L−1(a1/|P|;µ, σ2)

=µmax+σmax

√

2(ln|P| − ln(−ln a))+2 ln ln2, (1)

for 2−|P| ≤ a < 1. The approximation algorithm is to
calculate

A(a) = µmax+σmax

√

2(C−ln(−lna))+ 2 ln ln2,
(2)

where C is an upper bound on |P|. If C = ln |P|, we
have A(a) = L(a1/|P|;µmax, σ

2
max).

The time complexity of our algorithm is O(|E|).
It is well known that we can calculate µmax and σmax

in O(|E|) time using the technique of PERT [8]. Since
we can easily show that 2|V | is an upper bound on the
number of paths in a DAG, one can take ln 2|V | as the
value of C . This takes only O(log |V |) time.

As for the approximation factor, we can prove the
following theorem.

Theorem 1. The approximation factor of the algorithm
is given by

A(a)

F−1

MAX(a)
= O

(

σ

µ

√

C

h

)

,

where µ = mine∈E{µe}, σ = maxe∈E{σe}, and h is
the maximum number of edges in P ∈ P . �

This theorem shows a trade-off between the approx-
imation factor and the computational time; we can
have better approximation factor by taking the exact
ln |P| as the value of C , which may increase the com-
putational time.
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