7K-01

小型デバイス向けデータフロー型ビジュアルプログラミング環境構築に 向けたマイコンボードへの mruby/c コード書き込みツールの開発

河原 美優† 尾倉 颯太‡ 杉山耕一朗† 田中 和明*

松江工業高等専門学校情報工学科† 九州工業大学情報工学部‡ 九州工業大学情報工学研究院*

1. はじめに

近年,内閣府より科学技術政策 Society 5.0 が定められ, IoT といったデータの活用が求めら れている. IoT 分野ではデータの流れの理解が重 要であり,その理解にはデータフロー型のビジ ュアルプログラミング言語が有効と考えられる. そこで我々は,マイコンボードを利用した IoT 開発に対し,2節で詳述するようなデータフロー 型ビジュアルプログラミング環境を構築してき た[1].しかしながら,これまでに開発した環境 はプログラムの作成から実行までがブラウザ上 で完結せず,デスクトップアプリケーションの 併用が必要となるといったユーザの利用しづら さがあった.

近年, Web Serial API [2]によって Web ペー ジとマイコンとのシリアル通信が可能となった. Web Serial API は 2021 年から「Chrome 89」に 標準搭載されている. 我々はこの技術を活用す ることで,これまで構築してきたデータフロー 型ビジュアルプログラミング環境をブラウザ上 で完結できる可能性があると考えた. そこで本 研究では, Web Serial API を用いてバイトコー ドをマイコンボードへ書き込むツールを開発す ることを目的とする.

2. マイコンでのフローの実行手順

データフロー型プログラミング環境を用いて 作成したフローをマイコンで実行するには、フ ローをマイコンの解釈可能な言語のプログラム に変換することや、そのプログラムをマイコン ボードに書き込むという手順が必要となる. 我々のこれまでの研究[1]における実行手順を図 1 に示す. PIC マイコンを搭載したマイコンボー ド RBoard [3]をターゲットとし、データフロー 型ビジュアルプログラミング開発ツール Node-RED に RBoard 用のノードを追加した(以下、この 拡張を加えた Noe-RED を「RBoard 用 Node-RED」

Development of a mruby/c code writing tool to microcomputer board for a dataflow visual programming environment suitable for small devices と称す). 加えて, RBoard 用 Node-RED が生成す る JSON コードを軽量 Ruby 言語 mruby/c のコー ドに変換するための Ruby 生成器を開発した. mruby/c コードをコンパイルしてバイトコードへ 変換し, それをシリアル通信で PIC マイコンに 書き込む部分については既存の mruby/c IDE [4] を用いている.

図1 これまでの研究[1]における プログラム実行手順

3. 研究内容

3.1 プログラム書き込みツールの概要

本研究で開発する書き込みツールは、2 節で述 べた mruby/c IDE の担っているバイトコードを マイコンボードへ書き込む部分を置換するもの である.この書き込みツールはブラウザ上で動 作するクライアントサイドプログラムであり、 HTML, JavaScript, CSS を用いて構成されている.

本書き込みツールの画面を図 2 に示す. 画面 上のボタンをクリックすることで必要な操作を 実行することができる.まず「接続」ボタンを クリックすることで,パソコンと RBoard とのシ リアル通信を確立することができる.次に, 「ファイルを選択」ボタンをクリックすること

で,バイナリファイルをアップロードすること ができる.図には示さないが,バイナリファイ ルをアップロードすると「ファイルを選択」ボ タンの表示がファイル名に変化する.最後に

[†]Miu Kawahara, Ko-ichiro Sugiyama; National Institute of Technology, Matsue College

[‡]Sota Ogura, Kyushu Institute of Technology

^{*}Kazuaki Tanaka, Kyushu Institute of Technology

「書き込み」ボタンをクリックすると,バイナ リコードをマイコンへ転送することができる. なお,「切断」をクリックするとパソコンとマ イコンとのシリアル通信が切断される.図2の 下方にあるテキスト表示エリアは,シリアルモ ニタに相当するものである. RBoard の出力をこ のエリアに表示させることができる.

図2 プログラム書き込みツールの外見

3.2 プログラム書き込みツールの実装方法

書き込みツールは RBoard の通信プロトコル [5]に基づいて実装されている. このプロトコル ではバイトコードの書き込みのために, 改行コ ード, write コマンド, バイトコード, execute コマンドを順番に送信する必要がある. 本書き 込みツールのソースコードの骨格を図 3 に示す が, まさにこのバイナリファイルを書き込む手 順が JavaScript で実装されている.

図3 プログラム書き込みツールの ソースコードの骨格

図 3 において用いられている変数であるが, 変数 port にはシリアルデバイスとの接続状態や, 読み込みの状態などが格納されている. requestPort()メソッドを用いることで、ブラウ ザ上でシリアルデバイスをユーザに選択させて いる.また、変数 writer はデータをシリアルポ ートに書き込むためのインタフェースである. write()メソッドによって選択されたシリアルポ ートにデータを書き込んでいる.write()メソッ ドの引数は Web Serial API の規格に合わせて TextEncoder オブジェクトを用いて8ビット符号 なし整数値の配列形式に変換している.マイコ ンに送信されるバイトコードも同様に8ビット 符号なし整数値の配列形式に変換した結果の配列 を変数 ary に格納している.

4.まとめ

動作検証として本書き込みツールを用いたバ イナリファイルの書き込みおよび実行を行った ところ、ブラウザから RBoard とシリアル通信が 可能なこと、さらにバイトコードの書き込まれ た RBoard が想定通りの動作をすることが確認で きた.

今後の課題は、本書き込みツールと図 1 に示 した Ruby 生成器を連動させることである. 具体 的には, RBoard 用 Node-RED の生成した JSON コ ードを本書き込みツールにアップロードするよ うにし,書き込みツールがバックグラウンドで Ruby 生成器を利用するようにする.現在,共同 研究者が IDE の担っていた mruby/c コードのコ ンパイル作業を Ruby 生成器で行えるようにして おり,連携のための準備は整っている. 連携の 結果として,データフロー型ビジュアルプログ ラミング環境をブラウザ上で完結させることが でき, RBoard 用 Node-RED と本書き込みツールの みを利用して IoT 開発できるようになると期待 される. これによりユーザの利便性が向上する と考えられる.

参考文献

[1] 村上旭人,田中和明.小型デバイス向けのデータフ ロー型プログラミング環境の構築. 情報処理学会第 84 回全国大会,2K-08,2022.

[2] "Serial API 手引き書". https://g200kg.github. io/web-serial-api-ja/EXPLAINER.html, (参照 2023-01-12).

[3] "RBoard". https://www.sjcinc.co.jp/service/ rboard, (参照 2023-01-12).

[4] "mruby/c IDE". https://www.s-itoc.jp/support/ technical-support/mrubyc/mrubyc-report/703, (参照 2023-01-12).

[5] "mrbwrite", https://github.com/mrubyc/ mrbwrite, (参照 2023-01-12).